Base class for all dense matrices, vectors, and expressions. More...
#include <MatrixBase.h>
Classes | |
struct | ConstDiagonalIndexReturnType |
struct | ConstSelfAdjointViewReturnType |
struct | ConstTriangularViewReturnType |
struct | cross_product_return_type |
struct | DiagonalIndexReturnType |
struct | SelfAdjointViewReturnType |
struct | TriangularViewReturnType |
Public Types | |
enum | { SizeMinusOne = SizeAtCompileTime==Dynamic ? Dynamic : SizeAtCompileTime-1 } |
typedef MatrixBase | StorageBaseType |
typedef internal::traits < Derived >::StorageKind | StorageKind |
typedef internal::traits < Derived >::Index | Index |
typedef internal::traits < Derived >::Scalar | Scalar |
typedef internal::packet_traits < Scalar >::type | PacketScalar |
typedef NumTraits< Scalar >::Real | RealScalar |
typedef DenseBase< Derived > | Base |
typedef Base::CoeffReturnType | CoeffReturnType |
typedef Base::ConstTransposeReturnType | ConstTransposeReturnType |
typedef Base::RowXpr | RowXpr |
typedef Base::ColXpr | ColXpr |
typedef Matrix< Scalar, EIGEN_SIZE_MAX(RowsAtCompileTime, ColsAtCompileTime), EIGEN_SIZE_MAX(RowsAtCompileTime, ColsAtCompileTime)> | SquareMatrixType |
typedef Matrix< typename internal::traits< Derived > ::Scalar, internal::traits < Derived >::RowsAtCompileTime, internal::traits< Derived > ::ColsAtCompileTime, AutoAlign|(internal::traits < Derived >::Flags &RowMajorBit?RowMajor:ColMajor), internal::traits< Derived > ::MaxRowsAtCompileTime, internal::traits< Derived > ::MaxColsAtCompileTime > | PlainObject |
The plain matrix type corresponding to this expression. | |
typedef CwiseNullaryOp < internal::scalar_constant_op < Scalar >, Derived > | ConstantReturnType |
typedef internal::conditional < NumTraits< Scalar > ::IsComplex, CwiseUnaryOp < internal::scalar_conjugate_op < Scalar > , ConstTransposeReturnType > , ConstTransposeReturnType > ::type | AdjointReturnType |
typedef Matrix< std::complex < RealScalar > , internal::traits< Derived > ::ColsAtCompileTime, 1, ColMajor > | EigenvaluesReturnType |
typedef CwiseNullaryOp < internal::scalar_identity_op < Scalar >, Derived > | IdentityReturnType |
typedef Block< const CwiseNullaryOp < internal::scalar_identity_op < Scalar >, SquareMatrixType > , internal::traits< Derived > ::RowsAtCompileTime, internal::traits< Derived > ::ColsAtCompileTime > | BasisReturnType |
typedef CwiseUnaryOp < internal::scalar_multiple_op < Scalar >, const Derived > | ScalarMultipleReturnType |
typedef CwiseUnaryOp < internal::scalar_quotient1_op < Scalar >, const Derived > | ScalarQuotient1ReturnType |
typedef internal::conditional < NumTraits< Scalar > ::IsComplex, const CwiseUnaryOp < internal::scalar_conjugate_op < Scalar >, const Derived > , const Derived & >::type | ConjugateReturnType |
typedef internal::conditional < NumTraits< Scalar > ::IsComplex, const CwiseUnaryOp < internal::scalar_real_op < Scalar >, const Derived > , const Derived & >::type | RealReturnType |
typedef internal::conditional < NumTraits< Scalar > ::IsComplex, CwiseUnaryView < internal::scalar_real_ref_op < Scalar >, Derived >, Derived & > ::type | NonConstRealReturnType |
typedef CwiseUnaryOp < internal::scalar_imag_op < Scalar >, const Derived > | ImagReturnType |
typedef CwiseUnaryView < internal::scalar_imag_ref_op < Scalar >, Derived > | NonConstImagReturnType |
typedef Diagonal< Derived > | DiagonalReturnType |
typedef const Diagonal< const Derived > | ConstDiagonalReturnType |
typedef Block< const Derived, internal::traits< Derived > ::ColsAtCompileTime==1?SizeMinusOne:1, internal::traits< Derived > ::ColsAtCompileTime==1?1:SizeMinusOne > | ConstStartMinusOne |
typedef CwiseUnaryOp < internal::scalar_quotient1_op < typename internal::traits < Derived >::Scalar >, const ConstStartMinusOne > | HNormalizedReturnType |
typedef internal::stem_function < Scalar >::type | StemFunction |
Public Member Functions | |
Index | diagonalSize () const |
const CwiseUnaryOp < internal::scalar_opposite_op < typename internal::traits < Derived >::Scalar >, const Derived > | operator- () const |
const ScalarMultipleReturnType | operator* (const Scalar &scalar) const |
const CwiseUnaryOp < internal::scalar_quotient1_op < typename internal::traits < Derived >::Scalar >, const Derived > | operator/ (const Scalar &scalar) const |
const CwiseUnaryOp < internal::scalar_multiple2_op < Scalar, std::complex< Scalar > >, const Derived > | operator* (const std::complex< Scalar > &scalar) const |
template<typename NewType > | |
internal::cast_return_type < Derived, const CwiseUnaryOp < internal::scalar_cast_op < typename internal::traits < Derived >::Scalar, NewType > , const Derived > >::type | cast () const |
ConjugateReturnType | conjugate () const |
RealReturnType | real () const |
const ImagReturnType | imag () const |
template<typename CustomUnaryOp > | |
const CwiseUnaryOp < CustomUnaryOp, const Derived > | unaryExpr (const CustomUnaryOp &func=CustomUnaryOp()) const |
Apply a unary operator coefficient-wise. | |
template<typename CustomViewOp > | |
const CwiseUnaryView < CustomViewOp, const Derived > | unaryViewExpr (const CustomViewOp &func=CustomViewOp()) const |
NonConstRealReturnType | real () |
NonConstImagReturnType | imag () |
template<typename CustomBinaryOp , typename OtherDerived > | |
EIGEN_STRONG_INLINE const CwiseBinaryOp< CustomBinaryOp, const Derived, const OtherDerived > | binaryExpr (const EIGEN_CURRENT_STORAGE_BASE_CLASS< OtherDerived > &other, const CustomBinaryOp &func=CustomBinaryOp()) const |
EIGEN_STRONG_INLINE const CwiseUnaryOp < internal::scalar_abs_op < Scalar >, const Derived > | cwiseAbs () const |
EIGEN_STRONG_INLINE const CwiseUnaryOp < internal::scalar_abs2_op < Scalar >, const Derived > | cwiseAbs2 () const |
const CwiseUnaryOp < internal::scalar_sqrt_op < Scalar >, const Derived > | cwiseSqrt () const |
const CwiseUnaryOp < internal::scalar_inverse_op < Scalar >, const Derived > | cwiseInverse () const |
const CwiseUnaryOp < std::binder1st < std::equal_to< Scalar > >, const Derived > | cwiseEqual (const Scalar &s) const |
template<typename OtherDerived > | |
EIGEN_STRONG_INLINE const | EIGEN_CWISE_PRODUCT_RETURN_TYPE (Derived, OtherDerived) cwiseProduct(const EIGEN_CURRENT_STORAGE_BASE_CLASS< OtherDerived > &other) const |
template<typename OtherDerived > | |
const CwiseBinaryOp < std::equal_to< Scalar > , const Derived, const OtherDerived > | cwiseEqual (const EIGEN_CURRENT_STORAGE_BASE_CLASS< OtherDerived > &other) const |
template<typename OtherDerived > | |
const CwiseBinaryOp < std::not_equal_to< Scalar > , const Derived, const OtherDerived > | cwiseNotEqual (const EIGEN_CURRENT_STORAGE_BASE_CLASS< OtherDerived > &other) const |
template<typename OtherDerived > | |
EIGEN_STRONG_INLINE const CwiseBinaryOp < internal::scalar_min_op < Scalar >, const Derived, const OtherDerived > | cwiseMin (const EIGEN_CURRENT_STORAGE_BASE_CLASS< OtherDerived > &other) const |
template<typename OtherDerived > | |
EIGEN_STRONG_INLINE const CwiseBinaryOp < internal::scalar_max_op < Scalar >, const Derived, const OtherDerived > | cwiseMax (const EIGEN_CURRENT_STORAGE_BASE_CLASS< OtherDerived > &other) const |
template<typename OtherDerived > | |
EIGEN_STRONG_INLINE const CwiseBinaryOp < internal::scalar_quotient_op < Scalar >, const Derived, const OtherDerived > | cwiseQuotient (const EIGEN_CURRENT_STORAGE_BASE_CLASS< OtherDerived > &other) const |
Derived & | operator= (const MatrixBase &other) |
template<typename OtherDerived > | |
Derived & | operator= (const DenseBase< OtherDerived > &other) |
template<typename OtherDerived > | |
Derived & | operator= (const EigenBase< OtherDerived > &other) |
Copies the generic expression other into *this. | |
template<typename OtherDerived > | |
Derived & | operator= (const ReturnByValue< OtherDerived > &other) |
template<typename ProductDerived , typename Lhs , typename Rhs > | |
Derived & | lazyAssign (const ProductBase< ProductDerived, Lhs, Rhs > &other) |
template<typename OtherDerived > | |
Derived & | operator+= (const MatrixBase< OtherDerived > &other) |
template<typename OtherDerived > | |
Derived & | operator-= (const MatrixBase< OtherDerived > &other) |
template<typename OtherDerived > | |
const ProductReturnType < Derived, OtherDerived > ::Type | operator* (const MatrixBase< OtherDerived > &other) const |
template<typename OtherDerived > | |
const LazyProductReturnType < Derived, OtherDerived > ::Type | lazyProduct (const MatrixBase< OtherDerived > &other) const |
template<typename OtherDerived > | |
Derived & | operator*= (const EigenBase< OtherDerived > &other) |
template<typename OtherDerived > | |
void | applyOnTheLeft (const EigenBase< OtherDerived > &other) |
template<typename OtherDerived > | |
void | applyOnTheRight (const EigenBase< OtherDerived > &other) |
template<typename DiagonalDerived > | |
const DiagonalProduct< Derived, DiagonalDerived, OnTheRight > | operator* (const DiagonalBase< DiagonalDerived > &diagonal) const |
template<typename OtherDerived > | |
internal::scalar_product_traits < typename internal::traits < Derived >::Scalar, typename internal::traits< OtherDerived > ::Scalar >::ReturnType | dot (const MatrixBase< OtherDerived > &other) const |
RealScalar | squaredNorm () const |
RealScalar | norm () const |
RealScalar | stableNorm () const |
RealScalar | blueNorm () const |
RealScalar | hypotNorm () const |
const PlainObject | normalized () const |
void | normalize () |
const AdjointReturnType | adjoint () const |
void | adjointInPlace () |
DiagonalReturnType | diagonal () |
const ConstDiagonalReturnType | diagonal () const |
template<int Index> | |
DiagonalIndexReturnType< Index > ::Type | diagonal () |
template<int Index> | |
ConstDiagonalIndexReturnType < Index >::Type | diagonal () const |
DiagonalIndexReturnType < Dynamic >::Type | diagonal (Index index) |
ConstDiagonalIndexReturnType < Dynamic >::Type | diagonal (Index index) const |
template<unsigned int Mode> | |
TriangularViewReturnType< Mode > ::Type | triangularView () |
template<unsigned int Mode> | |
ConstTriangularViewReturnType < Mode >::Type | triangularView () const |
template<unsigned int UpLo> | |
SelfAdjointViewReturnType < UpLo >::Type | selfadjointView () |
template<unsigned int UpLo> | |
ConstSelfAdjointViewReturnType < UpLo >::Type | selfadjointView () const |
const SparseView< Derived > | sparseView (const Scalar &m_reference=Scalar(0), typename NumTraits< Scalar >::Real m_epsilon=NumTraits< Scalar >::dummy_precision()) const |
const DiagonalWrapper< const Derived > | asDiagonal () const |
const PermutationWrapper < const Derived > | asPermutation () const |
Derived & | setIdentity () |
Derived & | setIdentity (Index rows, Index cols) |
Resizes to the given size, and writes the identity expression (not necessarily square) into *this. | |
bool | isIdentity (RealScalar prec=NumTraits< Scalar >::dummy_precision()) const |
bool | isDiagonal (RealScalar prec=NumTraits< Scalar >::dummy_precision()) const |
bool | isUpperTriangular (RealScalar prec=NumTraits< Scalar >::dummy_precision()) const |
bool | isLowerTriangular (RealScalar prec=NumTraits< Scalar >::dummy_precision()) const |
template<typename OtherDerived > | |
bool | isOrthogonal (const MatrixBase< OtherDerived > &other, RealScalar prec=NumTraits< Scalar >::dummy_precision()) const |
bool | isUnitary (RealScalar prec=NumTraits< Scalar >::dummy_precision()) const |
template<typename OtherDerived > | |
bool | operator== (const MatrixBase< OtherDerived > &other) const |
template<typename OtherDerived > | |
bool | operator!= (const MatrixBase< OtherDerived > &other) const |
NoAlias< Derived, Eigen::MatrixBase > | noalias () |
const ForceAlignedAccess< Derived > | forceAlignedAccess () const |
ForceAlignedAccess< Derived > | forceAlignedAccess () |
template<bool Enable> | |
internal::add_const_on_value_type < typename internal::conditional< Enable, ForceAlignedAccess< Derived > , Derived & >::type >::type | forceAlignedAccessIf () const |
template<bool Enable> | |
internal::conditional< Enable, ForceAlignedAccess< Derived > , Derived & >::type | forceAlignedAccessIf () |
Scalar | trace () const |
template<int p> | |
RealScalar | lpNorm () const |
MatrixBase< Derived > & | matrix () |
const MatrixBase< Derived > & | matrix () const |
ArrayWrapper< Derived > | array () |
const ArrayWrapper< Derived > | array () const |
const FullPivLU< PlainObject > | fullPivLu () const |
const PartialPivLU< PlainObject > | partialPivLu () const |
const internal::inverse_impl < Derived > | inverse () const |
template<typename ResultType > | |
void | computeInverseAndDetWithCheck (ResultType &inverse, typename ResultType::Scalar &determinant, bool &invertible, const RealScalar &absDeterminantThreshold=NumTraits< Scalar >::dummy_precision()) const |
template<typename ResultType > | |
void | computeInverseWithCheck (ResultType &inverse, bool &invertible, const RealScalar &absDeterminantThreshold=NumTraits< Scalar >::dummy_precision()) const |
Scalar | determinant () const |
const LLT< PlainObject > | llt () const |
const LDLT< PlainObject > | ldlt () const |
const HouseholderQR< PlainObject > | householderQr () const |
const ColPivHouseholderQR < PlainObject > | colPivHouseholderQr () const |
const FullPivHouseholderQR < PlainObject > | fullPivHouseholderQr () const |
EigenvaluesReturnType | eigenvalues () const |
Computes the eigenvalues of a matrix. | |
RealScalar | operatorNorm () const |
Computes the L2 operator norm. | |
JacobiSVD< PlainObject > | jacobiSvd (unsigned int computationOptions=0) const |
template<typename OtherDerived > | |
cross_product_return_type < OtherDerived >::type | cross (const MatrixBase< OtherDerived > &other) const |
template<typename OtherDerived > | |
PlainObject | cross3 (const MatrixBase< OtherDerived > &other) const |
PlainObject | unitOrthogonal (void) const |
Matrix< Scalar, 3, 1 > | eulerAngles (Index a0, Index a1, Index a2) const |
const HNormalizedReturnType | hnormalized () const |
void | makeHouseholderInPlace (Scalar &tau, RealScalar &beta) |
template<typename EssentialPart > | |
void | makeHouseholder (EssentialPart &essential, Scalar &tau, RealScalar &beta) const |
template<typename EssentialPart > | |
void | applyHouseholderOnTheLeft (const EssentialPart &essential, const Scalar &tau, Scalar *workspace) |
template<typename EssentialPart > | |
void | applyHouseholderOnTheRight (const EssentialPart &essential, const Scalar &tau, Scalar *workspace) |
template<typename OtherScalar > | |
void | applyOnTheLeft (Index p, Index q, const JacobiRotation< OtherScalar > &j) |
template<typename OtherScalar > | |
void | applyOnTheRight (Index p, Index q, const JacobiRotation< OtherScalar > &j) |
const MatrixExponentialReturnValue < Derived > | exp () const |
const MatrixFunctionReturnValue < Derived > | matrixFunction (StemFunction f) const |
const MatrixFunctionReturnValue < Derived > | cosh () const |
const MatrixFunctionReturnValue < Derived > | sinh () const |
const MatrixFunctionReturnValue < Derived > | cos () const |
const MatrixFunctionReturnValue < Derived > | sin () const |
template<typename Derived > | |
MatrixBase< Derived > ::ScalarMultipleReturnType | operator* (const UniformScaling< Scalar > &s) const |
Static Public Member Functions | |
static const IdentityReturnType | Identity () |
static const IdentityReturnType | Identity (Index rows, Index cols) |
static const BasisReturnType | Unit (Index size, Index i) |
static const BasisReturnType | Unit (Index i) |
static const BasisReturnType | UnitX () |
static const BasisReturnType | UnitY () |
static const BasisReturnType | UnitZ () |
static const BasisReturnType | UnitW () |
Protected Member Functions | |
MatrixBase () | |
template<typename OtherDerived > | |
Derived & | operator+= (const ArrayBase< OtherDerived > &) |
template<typename OtherDerived > | |
Derived & | operator-= (const ArrayBase< OtherDerived > &) |
Friends | |
const ScalarMultipleReturnType | operator* (const Scalar &scalar, const StorageBaseType &matrix) |
const CwiseUnaryOp < internal::scalar_multiple2_op < Scalar, std::complex< Scalar > >, const Derived > | operator* (const std::complex< Scalar > &scalar, const StorageBaseType &matrix) |
Base class for all dense matrices, vectors, and expressions.
This class is the base that is inherited by all matrix, vector, and related expression types. Most of the Eigen API is contained in this class, and its base classes. Other important classes for the Eigen API are Matrix, and VectorwiseOp.
Note that some methods are defined in other modules such as the LU_Module LU module for all functions related to matrix inversions.
Derived | is the derived type, e.g. a matrix type, or an expression, etc. |
When writing a function taking Eigen objects as argument, if you want your function to take as argument any matrix, vector, or expression, just let it take a MatrixBase argument. As an example, here is a function printFirstRow which, given a matrix, vector, or expression x, prints the first row of x.
template<typename Derived> void printFirstRow(const Eigen::MatrixBase<Derived>& x) { cout << x.row(0) << endl; }
This class can be extended with the help of the plugin mechanism described on the page TopicCustomizingEigen by defining the preprocessor symbol EIGEN_MATRIXBASE_PLUGIN
.
typedef internal::conditional<NumTraits<Scalar>::IsComplex, CwiseUnaryOp<internal::scalar_conjugate_op<Scalar>, ConstTransposeReturnType>, ConstTransposeReturnType >::type MatrixBase< Derived >::AdjointReturnType |
typedef DenseBase<Derived> MatrixBase< Derived >::Base |
Reimplemented from DenseBase< Derived >.
Reimplemented in MatrixWrapper< ExpressionType >, DiagonalProduct< MatrixType, DiagonalType, ProductOrder >, Flagged< ExpressionType, Added, Removed >, ProductBase< Derived, Lhs, Rhs >, ScaledProduct< NestedProduct >, CoeffBasedProduct< LhsNested, RhsNested, NestingFlags >, Minor< MatrixType >, Homogeneous< MatrixType, _Direction >, ProductBase< GeneralProduct< Lhs, Rhs, GemmProduct >, Lhs, Rhs >, ProductBase< SelfadjointProductMatrix< Lhs, LhsMode, false, Rhs, 0, true >, Lhs, Rhs >, ProductBase< TriangularProduct< Mode, true, Lhs, false, Rhs, true >, Lhs, Rhs >, ProductBase< ScaledProduct< NestedProduct >, NestedProduct::_LhsNested, NestedProduct::_RhsNested >, ProductBase< TriangularProduct< Mode, LhsIsTriangular, Lhs, false, Rhs, false >, Lhs, Rhs >, ProductBase< GeneralProduct< Lhs, Rhs, OuterProduct >, Lhs, Rhs >, ProductBase< DenseTimeSparseSelfAdjointProduct< Lhs, Rhs, UpLo >, Lhs, Rhs >, ProductBase< GeneralProduct< Lhs, Rhs, GemvProduct >, Lhs, Rhs >, ProductBase< SelfadjointProductMatrix< Lhs, 0, true, Rhs, RhsMode, false >, Lhs, Rhs >, ProductBase< TriangularProduct< Mode, false, Lhs, true, Rhs, false >, Lhs, Rhs >, ProductBase< DenseTimeSparseProduct< Lhs, Rhs >, Lhs, Rhs >, ProductBase< SparseSelfAdjointTimeDenseProduct< Lhs, Rhs, UpLo >, Lhs, Rhs >, ProductBase< SparseTimeDenseProduct< Lhs, Rhs >, Lhs, Rhs >, and ProductBase< SelfadjointProductMatrix< Lhs, LhsMode, false, Rhs, RhsMode, false >, Lhs, Rhs >.
typedef Block<const CwiseNullaryOp<internal::scalar_identity_op<Scalar>, SquareMatrixType>, internal::traits<Derived>::RowsAtCompileTime, internal::traits<Derived>::ColsAtCompileTime> MatrixBase< Derived >::BasisReturnType |
typedef Base::CoeffReturnType MatrixBase< Derived >::CoeffReturnType |
Reimplemented from DenseBase< Derived >.
typedef Base::ColXpr MatrixBase< Derived >::ColXpr |
Reimplemented from DenseBase< Derived >.
typedef internal::conditional<NumTraits<Scalar>::IsComplex, const CwiseUnaryOp<internal::scalar_conjugate_op<Scalar>, const Derived>, const Derived& >::type MatrixBase< Derived >::ConjugateReturnType |
typedef CwiseNullaryOp<internal::scalar_constant_op<Scalar>,Derived> MatrixBase< Derived >::ConstantReturnType |
Reimplemented from DenseBase< Derived >.
typedef const Diagonal<const Derived> MatrixBase< Derived >::ConstDiagonalReturnType |
typedef Block<const Derived, internal::traits<Derived>::ColsAtCompileTime==1 ? SizeMinusOne : 1, internal::traits<Derived>::ColsAtCompileTime==1 ? 1 : SizeMinusOne> MatrixBase< Derived >::ConstStartMinusOne |
typedef Base::ConstTransposeReturnType MatrixBase< Derived >::ConstTransposeReturnType |
Reimplemented from DenseBase< Derived >.
typedef Diagonal<Derived> MatrixBase< Derived >::DiagonalReturnType |
typedef Matrix<std::complex<RealScalar>, internal::traits<Derived>::ColsAtCompileTime, 1, ColMajor> MatrixBase< Derived >::EigenvaluesReturnType |
Reimplemented from DenseBase< Derived >.
typedef CwiseUnaryOp<internal::scalar_quotient1_op<typename internal::traits<Derived>::Scalar>, const ConstStartMinusOne > MatrixBase< Derived >::HNormalizedReturnType |
typedef CwiseNullaryOp<internal::scalar_identity_op<Scalar>,Derived> MatrixBase< Derived >::IdentityReturnType |
typedef CwiseUnaryOp<internal::scalar_imag_op<Scalar>, const Derived> MatrixBase< Derived >::ImagReturnType |
typedef internal::traits<Derived>::Index MatrixBase< Derived >::Index |
The type of indices
Reimplemented from DenseBase< Derived >.
typedef CwiseUnaryView<internal::scalar_imag_ref_op<Scalar>, Derived> MatrixBase< Derived >::NonConstImagReturnType |
typedef internal::conditional<NumTraits<Scalar>::IsComplex, CwiseUnaryView<internal::scalar_real_ref_op<Scalar>, Derived>, Derived& >::type MatrixBase< Derived >::NonConstRealReturnType |
typedef internal::packet_traits<Scalar>::type MatrixBase< Derived >::PacketScalar |
Reimplemented from DenseBase< Derived >.
typedef Matrix<typename internal::traits<Derived>::Scalar, internal::traits<Derived>::RowsAtCompileTime, internal::traits<Derived>::ColsAtCompileTime, AutoAlign | (internal::traits<Derived>::Flags&RowMajorBit ? RowMajor : ColMajor), internal::traits<Derived>::MaxRowsAtCompileTime, internal::traits<Derived>::MaxColsAtCompileTime > MatrixBase< Derived >::PlainObject |
The plain matrix type corresponding to this expression.
This is not necessarily exactly the return type of eval(). In the case of plain matrices, the return type of eval() is a const reference to a matrix, not a matrix! It is however guaranteed that the return type of eval() is either PlainObject or const PlainObject&.
Reimplemented in ProductBase< Derived, Lhs, Rhs >, ScaledProduct< NestedProduct >, CoeffBasedProduct< LhsNested, RhsNested, NestingFlags >, ProductBase< GeneralProduct< Lhs, Rhs, GemmProduct >, Lhs, Rhs >, ProductBase< SelfadjointProductMatrix< Lhs, LhsMode, false, Rhs, 0, true >, Lhs, Rhs >, ProductBase< TriangularProduct< Mode, true, Lhs, false, Rhs, true >, Lhs, Rhs >, ProductBase< ScaledProduct< NestedProduct >, NestedProduct::_LhsNested, NestedProduct::_RhsNested >, ProductBase< TriangularProduct< Mode, LhsIsTriangular, Lhs, false, Rhs, false >, Lhs, Rhs >, ProductBase< GeneralProduct< Lhs, Rhs, OuterProduct >, Lhs, Rhs >, ProductBase< DenseTimeSparseSelfAdjointProduct< Lhs, Rhs, UpLo >, Lhs, Rhs >, ProductBase< GeneralProduct< Lhs, Rhs, GemvProduct >, Lhs, Rhs >, ProductBase< SelfadjointProductMatrix< Lhs, 0, true, Rhs, RhsMode, false >, Lhs, Rhs >, ProductBase< TriangularProduct< Mode, false, Lhs, true, Rhs, false >, Lhs, Rhs >, ProductBase< DenseTimeSparseProduct< Lhs, Rhs >, Lhs, Rhs >, ProductBase< SparseSelfAdjointTimeDenseProduct< Lhs, Rhs, UpLo >, Lhs, Rhs >, ProductBase< SparseTimeDenseProduct< Lhs, Rhs >, Lhs, Rhs >, and ProductBase< SelfadjointProductMatrix< Lhs, LhsMode, false, Rhs, RhsMode, false >, Lhs, Rhs >.
typedef internal::conditional<NumTraits<Scalar>::IsComplex, const CwiseUnaryOp<internal::scalar_real_op<Scalar>, const Derived>, const Derived& >::type MatrixBase< Derived >::RealReturnType |
typedef NumTraits<Scalar>::Real MatrixBase< Derived >::RealScalar |
Reimplemented from DenseBase< Derived >.
typedef Base::RowXpr MatrixBase< Derived >::RowXpr |
Reimplemented from DenseBase< Derived >.
typedef internal::traits<Derived>::Scalar MatrixBase< Derived >::Scalar |
Reimplemented from DenseBase< Derived >.
Reimplemented in ScaledProduct< NestedProduct >.
typedef CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const Derived> MatrixBase< Derived >::ScalarMultipleReturnType |
typedef CwiseUnaryOp<internal::scalar_quotient1_op<Scalar>, const Derived> MatrixBase< Derived >::ScalarQuotient1ReturnType |
typedef Matrix<Scalar,EIGEN_SIZE_MAX(RowsAtCompileTime,ColsAtCompileTime), EIGEN_SIZE_MAX(RowsAtCompileTime,ColsAtCompileTime)> MatrixBase< Derived >::SquareMatrixType |
type of the equivalent square matrix
typedef internal::stem_function<Scalar>::type MatrixBase< Derived >::StemFunction |
typedef MatrixBase MatrixBase< Derived >::StorageBaseType |
typedef internal::traits<Derived>::StorageKind MatrixBase< Derived >::StorageKind |
Reimplemented from DenseBase< Derived >.
MatrixBase< Derived >::MatrixBase | ( | ) | [inline, protected] |
const MatrixBase< Derived >::AdjointReturnType MatrixBase< Derived >::adjoint | ( | ) | const [inline] |
Example:
Output:
m = m.adjoint(); // bug!!! caused by aliasing effect
m.adjointInPlace();
m = m.adjoint().eval();
void MatrixBase< Derived >::adjointInPlace | ( | ) | [inline] |
This is the "in place" version of adjoint(): it replaces *this
by its own transpose. Thus, doing
m.adjointInPlace();
has the same effect on m as doing
m = m.adjoint().eval();
and is faster and also safer because in the latter line of code, forgetting the eval() results in a bug caused by aliasing.
Notice however that this method is only useful if you want to replace a matrix by its own adjoint. If you just need the adjoint of a matrix, use adjoint().
*this
must be a resizable matrix.void MatrixBase< Derived >::applyHouseholderOnTheLeft | ( | const EssentialPart & | essential, | |
const Scalar & | tau, | |||
Scalar * | workspace | |||
) |
void MatrixBase< Derived >::applyHouseholderOnTheRight | ( | const EssentialPart & | essential, | |
const Scalar & | tau, | |||
Scalar * | workspace | |||
) |
void MatrixBase< Derived >::applyOnTheLeft | ( | const EigenBase< OtherDerived > & | other | ) | [inline] |
replaces *this
by *this
* other.
void MatrixBase< Derived >::applyOnTheLeft | ( | Index | p, | |
Index | q, | |||
const JacobiRotation< OtherScalar > & | j | |||
) | [inline] |
Applies the rotation in the plane j to the rows p and q of *this
, i.e., it computes B = J * B, with .
void MatrixBase< Derived >::applyOnTheRight | ( | const EigenBase< OtherDerived > & | other | ) | [inline] |
replaces *this
by *this
* other. It is equivalent to MatrixBase::operator*=()
void MatrixBase< Derived >::applyOnTheRight | ( | Index | p, | |
Index | q, | |||
const JacobiRotation< OtherScalar > & | j | |||
) | [inline] |
Applies the rotation in the plane j to the columns p and q of *this
, i.e., it computes B = B * J with .
ArrayWrapper<Derived> MatrixBase< Derived >::array | ( | ) | [inline] |
const ArrayWrapper<Derived> MatrixBase< Derived >::array | ( | ) | const [inline] |
const DiagonalWrapper< const Derived > MatrixBase< Derived >::asDiagonal | ( | ) | const [inline] |
Example:
Output:
const PermutationWrapper< const Derived > MatrixBase< Derived >::asPermutation | ( | ) | const |
EIGEN_STRONG_INLINE const CwiseBinaryOp<CustomBinaryOp, const Derived, const OtherDerived> MatrixBase< Derived >::binaryExpr | ( | const EIGEN_CURRENT_STORAGE_BASE_CLASS< OtherDerived > & | other, | |
const CustomBinaryOp & | func = CustomBinaryOp() | |||
) | const [inline] |
*this
and other *this
and other The template parameter CustomBinaryOp is the type of the functor of the custom operator (see class CwiseBinaryOp for an example)
Here is an example illustrating the use of custom functors:
Output:
NumTraits< typename internal::traits< Derived >::Scalar >::Real MatrixBase< Derived >::blueNorm | ( | ) | const [inline] |
*this
using the Blue's algorithm. A Portable Fortran Program to Find the Euclidean Norm of a Vector, ACM TOMS, Vol 4, Issue 1, 1978.For architecture/scalar types without vectorization, this version is much faster than stableNorm(). Otherwise the stableNorm() is faster.
internal::cast_return_type<Derived,const CwiseUnaryOp<internal::scalar_cast_op<typename internal::traits<Derived>::Scalar, NewType>, const Derived> >::type MatrixBase< Derived >::cast | ( | ) | const [inline] |
The template parameter NewScalar is the type we are casting the scalars to.
const ColPivHouseholderQR< typename MatrixBase< Derived >::PlainObject > MatrixBase< Derived >::colPivHouseholderQr | ( | ) | const |
*this
.void MatrixBase< Derived >::computeInverseAndDetWithCheck | ( | ResultType & | inverse, | |
typename ResultType::Scalar & | determinant, | |||
bool & | invertible, | |||
const RealScalar & | absDeterminantThreshold = NumTraits<Scalar>::dummy_precision() | |||
) | const [inline] |
Computation of matrix inverse and determinant, with invertibility check.
This is only for fixed-size square matrices of size up to 4x4.
inverse | Reference to the matrix in which to store the inverse. | |
determinant | Reference to the variable in which to store the inverse. | |
invertible | Reference to the bool variable in which to store whether the matrix is invertible. | |
absDeterminantThreshold | Optional parameter controlling the invertibility check. The matrix will be declared invertible if the absolute value of its determinant is greater than this threshold. |
Example:
Output:
void MatrixBase< Derived >::computeInverseWithCheck | ( | ResultType & | inverse, | |
bool & | invertible, | |||
const RealScalar & | absDeterminantThreshold = NumTraits<Scalar>::dummy_precision() | |||
) | const [inline] |
Computation of matrix inverse, with invertibility check.
This is only for fixed-size square matrices of size up to 4x4.
inverse | Reference to the matrix in which to store the inverse. | |
invertible | Reference to the bool variable in which to store whether the matrix is invertible. | |
absDeterminantThreshold | Optional parameter controlling the invertibility check. The matrix will be declared invertible if the absolute value of its determinant is greater than this threshold. |
Example:
Output:
ConjugateReturnType MatrixBase< Derived >::conjugate | ( | ) | const [inline] |
*this
.const MatrixFunctionReturnValue<Derived> MatrixBase< Derived >::cos | ( | ) | const |
const MatrixFunctionReturnValue<Derived> MatrixBase< Derived >::cosh | ( | ) | const |
MatrixBase< Derived >::template cross_product_return_type< OtherDerived >::type MatrixBase< Derived >::cross | ( | const MatrixBase< OtherDerived > & | other | ) | const [inline] |
*this
and other Here is a very good explanation of cross-product: http://xkcd.com/199/
MatrixBase< Derived >::PlainObject MatrixBase< Derived >::cross3 | ( | const MatrixBase< OtherDerived > & | other | ) | const [inline] |
*this
and other using only the x, y, and z coefficientsThe size of *this
and other must be four. This function is especially useful when using 4D vectors instead of 3D ones to get advantage of SSE/AltiVec vectorization.
EIGEN_STRONG_INLINE const CwiseUnaryOp<internal::scalar_abs_op<Scalar>, const Derived> MatrixBase< Derived >::cwiseAbs | ( | ) | const [inline] |
*this
Example:
Output:
EIGEN_STRONG_INLINE const CwiseUnaryOp<internal::scalar_abs2_op<Scalar>, const Derived> MatrixBase< Derived >::cwiseAbs2 | ( | ) | const [inline] |
*this
Example:
Output:
const CwiseUnaryOp<std::binder1st<std::equal_to<Scalar> >, const Derived> MatrixBase< Derived >::cwiseEqual | ( | const Scalar & | s | ) | const [inline] |
*this
and a scalar s const CwiseBinaryOp<std::equal_to<Scalar>, const Derived, const OtherDerived> MatrixBase< Derived >::cwiseEqual | ( | const EIGEN_CURRENT_STORAGE_BASE_CLASS< OtherDerived > & | other | ) | const [inline] |
Example:
Output:
const CwiseUnaryOp<internal::scalar_inverse_op<Scalar>, const Derived> MatrixBase< Derived >::cwiseInverse | ( | ) | const [inline] |
Example:
Output:
EIGEN_STRONG_INLINE const CwiseBinaryOp<internal::scalar_max_op<Scalar>, const Derived, const OtherDerived> MatrixBase< Derived >::cwiseMax | ( | const EIGEN_CURRENT_STORAGE_BASE_CLASS< OtherDerived > & | other | ) | const [inline] |
Example:
Output:
EIGEN_STRONG_INLINE const CwiseBinaryOp<internal::scalar_min_op<Scalar>, const Derived, const OtherDerived> MatrixBase< Derived >::cwiseMin | ( | const EIGEN_CURRENT_STORAGE_BASE_CLASS< OtherDerived > & | other | ) | const [inline] |
Example:
Output:
const CwiseBinaryOp<std::not_equal_to<Scalar>, const Derived, const OtherDerived> MatrixBase< Derived >::cwiseNotEqual | ( | const EIGEN_CURRENT_STORAGE_BASE_CLASS< OtherDerived > & | other | ) | const [inline] |
Example:
Output:
EIGEN_STRONG_INLINE const CwiseBinaryOp<internal::scalar_quotient_op<Scalar>, const Derived, const OtherDerived> MatrixBase< Derived >::cwiseQuotient | ( | const EIGEN_CURRENT_STORAGE_BASE_CLASS< OtherDerived > & | other | ) | const [inline] |
Example:
Output:
const CwiseUnaryOp<internal::scalar_sqrt_op<Scalar>, const Derived> MatrixBase< Derived >::cwiseSqrt | ( | ) | const [inline] |
Example:
Output:
internal::traits< Derived >::Scalar MatrixBase< Derived >::determinant | ( | ) | const [inline] |
MatrixBase< Derived >::template DiagonalIndexReturnType< Index >::Type MatrixBase< Derived >::diagonal | ( | ) | [inline] |
*this
*this
is not required to be square.
Example:
Output:
*this
*this
is not required to be square.
The template parameter DiagIndex represent a super diagonal if DiagIndex > 0 and a sub diagonal otherwise. DiagIndex == 0 is equivalent to the main diagonal.
Example:
Output:
MatrixBase< Derived >::template ConstDiagonalIndexReturnType< Index >::Type MatrixBase< Derived >::diagonal | ( | ) | const [inline] |
This is the const version of diagonal().
This is the const version of diagonal<int>().
Reimplemented in ProductBase< Derived, Lhs, Rhs >, ProductBase< Derived, Lhs, Rhs >, CoeffBasedProduct< LhsNested, RhsNested, NestingFlags >, CoeffBasedProduct< LhsNested, RhsNested, NestingFlags >, ProductBase< GeneralProduct< Lhs, Rhs, GemmProduct >, Lhs, Rhs >, ProductBase< GeneralProduct< Lhs, Rhs, GemmProduct >, Lhs, Rhs >, ProductBase< SelfadjointProductMatrix< Lhs, LhsMode, false, Rhs, 0, true >, Lhs, Rhs >, ProductBase< SelfadjointProductMatrix< Lhs, LhsMode, false, Rhs, 0, true >, Lhs, Rhs >, ProductBase< TriangularProduct< Mode, true, Lhs, false, Rhs, true >, Lhs, Rhs >, ProductBase< TriangularProduct< Mode, true, Lhs, false, Rhs, true >, Lhs, Rhs >, ProductBase< ScaledProduct< NestedProduct >, NestedProduct::_LhsNested, NestedProduct::_RhsNested >, ProductBase< ScaledProduct< NestedProduct >, NestedProduct::_LhsNested, NestedProduct::_RhsNested >, ProductBase< TriangularProduct< Mode, LhsIsTriangular, Lhs, false, Rhs, false >, Lhs, Rhs >, ProductBase< TriangularProduct< Mode, LhsIsTriangular, Lhs, false, Rhs, false >, Lhs, Rhs >, ProductBase< GeneralProduct< Lhs, Rhs, OuterProduct >, Lhs, Rhs >, ProductBase< GeneralProduct< Lhs, Rhs, OuterProduct >, Lhs, Rhs >, ProductBase< DenseTimeSparseSelfAdjointProduct< Lhs, Rhs, UpLo >, Lhs, Rhs >, ProductBase< DenseTimeSparseSelfAdjointProduct< Lhs, Rhs, UpLo >, Lhs, Rhs >, ProductBase< GeneralProduct< Lhs, Rhs, GemvProduct >, Lhs, Rhs >, ProductBase< GeneralProduct< Lhs, Rhs, GemvProduct >, Lhs, Rhs >, ProductBase< SelfadjointProductMatrix< Lhs, 0, true, Rhs, RhsMode, false >, Lhs, Rhs >, ProductBase< SelfadjointProductMatrix< Lhs, 0, true, Rhs, RhsMode, false >, Lhs, Rhs >, ProductBase< TriangularProduct< Mode, false, Lhs, true, Rhs, false >, Lhs, Rhs >, ProductBase< TriangularProduct< Mode, false, Lhs, true, Rhs, false >, Lhs, Rhs >, ProductBase< DenseTimeSparseProduct< Lhs, Rhs >, Lhs, Rhs >, ProductBase< DenseTimeSparseProduct< Lhs, Rhs >, Lhs, Rhs >, ProductBase< SparseSelfAdjointTimeDenseProduct< Lhs, Rhs, UpLo >, Lhs, Rhs >, ProductBase< SparseSelfAdjointTimeDenseProduct< Lhs, Rhs, UpLo >, Lhs, Rhs >, ProductBase< SparseTimeDenseProduct< Lhs, Rhs >, Lhs, Rhs >, ProductBase< SparseTimeDenseProduct< Lhs, Rhs >, Lhs, Rhs >, ProductBase< SelfadjointProductMatrix< Lhs, LhsMode, false, Rhs, RhsMode, false >, Lhs, Rhs >, and ProductBase< SelfadjointProductMatrix< Lhs, LhsMode, false, Rhs, RhsMode, false >, Lhs, Rhs >.
DiagonalIndexReturnType<Index>::Type MatrixBase< Derived >::diagonal | ( | ) |
MatrixBase< Derived >::template DiagonalIndexReturnType< Dynamic >::Type MatrixBase< Derived >::diagonal | ( | Index | index | ) | [inline] |
*this
*this
is not required to be square.
The template parameter DiagIndex represent a super diagonal if DiagIndex > 0 and a sub diagonal otherwise. DiagIndex == 0 is equivalent to the main diagonal.
Example:
Output:
ConstDiagonalIndexReturnType<Index>::Type MatrixBase< Derived >::diagonal | ( | ) | const |
Reimplemented in ProductBase< Derived, Lhs, Rhs >, ProductBase< Derived, Lhs, Rhs >, CoeffBasedProduct< LhsNested, RhsNested, NestingFlags >, CoeffBasedProduct< LhsNested, RhsNested, NestingFlags >, ProductBase< GeneralProduct< Lhs, Rhs, GemmProduct >, Lhs, Rhs >, ProductBase< GeneralProduct< Lhs, Rhs, GemmProduct >, Lhs, Rhs >, ProductBase< SelfadjointProductMatrix< Lhs, LhsMode, false, Rhs, 0, true >, Lhs, Rhs >, ProductBase< SelfadjointProductMatrix< Lhs, LhsMode, false, Rhs, 0, true >, Lhs, Rhs >, ProductBase< TriangularProduct< Mode, true, Lhs, false, Rhs, true >, Lhs, Rhs >, ProductBase< TriangularProduct< Mode, true, Lhs, false, Rhs, true >, Lhs, Rhs >, ProductBase< ScaledProduct< NestedProduct >, NestedProduct::_LhsNested, NestedProduct::_RhsNested >, ProductBase< ScaledProduct< NestedProduct >, NestedProduct::_LhsNested, NestedProduct::_RhsNested >, ProductBase< TriangularProduct< Mode, LhsIsTriangular, Lhs, false, Rhs, false >, Lhs, Rhs >, ProductBase< TriangularProduct< Mode, LhsIsTriangular, Lhs, false, Rhs, false >, Lhs, Rhs >, ProductBase< GeneralProduct< Lhs, Rhs, OuterProduct >, Lhs, Rhs >, ProductBase< GeneralProduct< Lhs, Rhs, OuterProduct >, Lhs, Rhs >, ProductBase< DenseTimeSparseSelfAdjointProduct< Lhs, Rhs, UpLo >, Lhs, Rhs >, ProductBase< DenseTimeSparseSelfAdjointProduct< Lhs, Rhs, UpLo >, Lhs, Rhs >, ProductBase< GeneralProduct< Lhs, Rhs, GemvProduct >, Lhs, Rhs >, ProductBase< GeneralProduct< Lhs, Rhs, GemvProduct >, Lhs, Rhs >, ProductBase< SelfadjointProductMatrix< Lhs, 0, true, Rhs, RhsMode, false >, Lhs, Rhs >, ProductBase< SelfadjointProductMatrix< Lhs, 0, true, Rhs, RhsMode, false >, Lhs, Rhs >, ProductBase< TriangularProduct< Mode, false, Lhs, true, Rhs, false >, Lhs, Rhs >, ProductBase< TriangularProduct< Mode, false, Lhs, true, Rhs, false >, Lhs, Rhs >, ProductBase< DenseTimeSparseProduct< Lhs, Rhs >, Lhs, Rhs >, ProductBase< DenseTimeSparseProduct< Lhs, Rhs >, Lhs, Rhs >, ProductBase< SparseSelfAdjointTimeDenseProduct< Lhs, Rhs, UpLo >, Lhs, Rhs >, ProductBase< SparseSelfAdjointTimeDenseProduct< Lhs, Rhs, UpLo >, Lhs, Rhs >, ProductBase< SparseTimeDenseProduct< Lhs, Rhs >, Lhs, Rhs >, ProductBase< SparseTimeDenseProduct< Lhs, Rhs >, Lhs, Rhs >, ProductBase< SelfadjointProductMatrix< Lhs, LhsMode, false, Rhs, RhsMode, false >, Lhs, Rhs >, and ProductBase< SelfadjointProductMatrix< Lhs, LhsMode, false, Rhs, RhsMode, false >, Lhs, Rhs >.
MatrixBase< Derived >::template ConstDiagonalIndexReturnType< Dynamic >::Type MatrixBase< Derived >::diagonal | ( | Index | index | ) | const [inline] |
This is the const version of diagonal(Index).
Reimplemented in ProductBase< Derived, Lhs, Rhs >, CoeffBasedProduct< LhsNested, RhsNested, NestingFlags >, ProductBase< GeneralProduct< Lhs, Rhs, GemmProduct >, Lhs, Rhs >, ProductBase< SelfadjointProductMatrix< Lhs, LhsMode, false, Rhs, 0, true >, Lhs, Rhs >, ProductBase< TriangularProduct< Mode, true, Lhs, false, Rhs, true >, Lhs, Rhs >, ProductBase< ScaledProduct< NestedProduct >, NestedProduct::_LhsNested, NestedProduct::_RhsNested >, ProductBase< TriangularProduct< Mode, LhsIsTriangular, Lhs, false, Rhs, false >, Lhs, Rhs >, ProductBase< GeneralProduct< Lhs, Rhs, OuterProduct >, Lhs, Rhs >, ProductBase< DenseTimeSparseSelfAdjointProduct< Lhs, Rhs, UpLo >, Lhs, Rhs >, ProductBase< GeneralProduct< Lhs, Rhs, GemvProduct >, Lhs, Rhs >, ProductBase< SelfadjointProductMatrix< Lhs, 0, true, Rhs, RhsMode, false >, Lhs, Rhs >, ProductBase< TriangularProduct< Mode, false, Lhs, true, Rhs, false >, Lhs, Rhs >, ProductBase< DenseTimeSparseProduct< Lhs, Rhs >, Lhs, Rhs >, ProductBase< SparseSelfAdjointTimeDenseProduct< Lhs, Rhs, UpLo >, Lhs, Rhs >, ProductBase< SparseTimeDenseProduct< Lhs, Rhs >, Lhs, Rhs >, and ProductBase< SelfadjointProductMatrix< Lhs, LhsMode, false, Rhs, RhsMode, false >, Lhs, Rhs >.
Index MatrixBase< Derived >::diagonalSize | ( | ) | const [inline] |
internal::scalar_product_traits< typename internal::traits< Derived >::Scalar, typename internal::traits< OtherDerived >::Scalar >::ReturnType MatrixBase< Derived >::dot | ( | const MatrixBase< OtherDerived > & | other | ) | const |
EIGEN_STRONG_INLINE const MatrixBase< Derived >::EIGEN_CWISE_PRODUCT_RETURN_TYPE | ( | Derived | , | |
OtherDerived | ||||
) | const [inline] |
Example:
Output:
MatrixBase< Derived >::EigenvaluesReturnType MatrixBase< Derived >::eigenvalues | ( | ) | const [inline] |
Computes the eigenvalues of a matrix.
This function computes the eigenvalues with the help of the EigenSolver class (for real matrices) or the ComplexEigenSolver class (for complex matrices).
The eigenvalues are repeated according to their algebraic multiplicity, so there are as many eigenvalues as rows in the matrix.
The SelfAdjointView class provides a better algorithm for selfadjoint matrices.
Example:
Output:
const MatrixExponentialReturnValue<Derived> MatrixBase< Derived >::exp | ( | ) | const |
const ForceAlignedAccess< Derived > MatrixBase< Derived >::forceAlignedAccess | ( | ) | const [inline] |
Reimplemented from DenseBase< Derived >.
ForceAlignedAccess< Derived > MatrixBase< Derived >::forceAlignedAccess | ( | ) | [inline] |
Reimplemented from DenseBase< Derived >.
internal::add_const_on_value_type< typename internal::conditional< Enable, ForceAlignedAccess< Derived >, Derived & >::type >::type MatrixBase< Derived >::forceAlignedAccessIf | ( | ) | const [inline] |
Reimplemented from DenseBase< Derived >.
internal::conditional< Enable, ForceAlignedAccess< Derived >, Derived & >::type MatrixBase< Derived >::forceAlignedAccessIf | ( | ) | [inline] |
Reimplemented from DenseBase< Derived >.
const FullPivHouseholderQR< typename MatrixBase< Derived >::PlainObject > MatrixBase< Derived >::fullPivHouseholderQr | ( | ) | const |
*this
.const FullPivLU< typename MatrixBase< Derived >::PlainObject > MatrixBase< Derived >::fullPivLu | ( | ) | const [inline] |
const MatrixBase< Derived >::HNormalizedReturnType MatrixBase< Derived >::hnormalized | ( | ) | const [inline] |
*this
Example:
Output:
const HouseholderQR< typename MatrixBase< Derived >::PlainObject > MatrixBase< Derived >::householderQr | ( | ) | const |
*this
.NumTraits< typename internal::traits< Derived >::Scalar >::Real MatrixBase< Derived >::hypotNorm | ( | ) | const [inline] |
*this
avoiding undeflow and overflow. This version use a concatenation of hypot() calls, and it is very slow.EIGEN_STRONG_INLINE const MatrixBase< Derived >::IdentityReturnType MatrixBase< Derived >::Identity | ( | ) | [static] |
This variant is only for fixed-size MatrixBase types. For dynamic-size types, you need to use the variant taking size arguments.
Example:
Output:
EIGEN_STRONG_INLINE const MatrixBase< Derived >::IdentityReturnType MatrixBase< Derived >::Identity | ( | Index | rows, | |
Index | cols | |||
) | [static] |
The parameters rows and cols are the number of rows and of columns of the returned matrix. Must be compatible with this MatrixBase type.
This variant is meant to be used for dynamic-size matrix types. For fixed-size types, it is redundant to pass rows and cols as arguments, so Identity() should be used instead.
Example:
Output:
const ImagReturnType MatrixBase< Derived >::imag | ( | ) | const [inline] |
*this
.NonConstImagReturnType MatrixBase< Derived >::imag | ( | ) | [inline] |
*this
.const internal::inverse_impl< Derived > MatrixBase< Derived >::inverse | ( | ) | const [inline] |
For small fixed sizes up to 4x4, this method uses cofactors. In the general case, this method uses class PartialPivLU.
bool MatrixBase< Derived >::isDiagonal | ( | RealScalar | prec = NumTraits<Scalar>::dummy_precision() |
) | const |
Example:
Output:
bool MatrixBase< Derived >::isIdentity | ( | RealScalar | prec = NumTraits<Scalar>::dummy_precision() |
) | const |
Example:
Output:
bool MatrixBase< Derived >::isLowerTriangular | ( | RealScalar | prec = NumTraits<Scalar>::dummy_precision() |
) | const |
bool MatrixBase< Derived >::isOrthogonal | ( | const MatrixBase< OtherDerived > & | other, | |
RealScalar | prec = NumTraits<Scalar>::dummy_precision() | |||
) | const |
Example:
Output:
bool MatrixBase< Derived >::isUnitary | ( | RealScalar | prec = NumTraits<Scalar>::dummy_precision() |
) | const |
m.isUnitary()
returns true if and only if the columns (equivalently, the rows) of m form an orthonormal basis.Example:
Output:
bool MatrixBase< Derived >::isUpperTriangular | ( | RealScalar | prec = NumTraits<Scalar>::dummy_precision() |
) | const |
JacobiSVD< typename MatrixBase< Derived >::PlainObject > MatrixBase< Derived >::jacobiSvd | ( | unsigned int | computationOptions = 0 |
) | const |
Derived & MatrixBase< Derived >::lazyAssign | ( | const ProductBase< ProductDerived, Lhs, Rhs > & | other | ) |
const LazyProductReturnType< Derived, OtherDerived >::Type MatrixBase< Derived >::lazyProduct | ( | const MatrixBase< OtherDerived > & | other | ) | const |
*this
and other without implicit evaluation.The returned product will behave like any other expressions: the coefficients of the product will be computed once at a time as requested. This might be useful in some extremely rare cases when only a small and no coherent fraction of the result's coefficients have to be computed.
const LDLT< typename MatrixBase< Derived >::PlainObject > MatrixBase< Derived >::ldlt | ( | ) | const [inline] |
*this
const LLT< typename MatrixBase< Derived >::PlainObject > MatrixBase< Derived >::llt | ( | ) | const [inline] |
*this
NumTraits< typename internal::traits< Derived >::Scalar >::Real MatrixBase< Derived >::lpNorm | ( | ) | const [inline] |
Reimplemented from DenseBase< Derived >.
void MatrixBase< Derived >::makeHouseholder | ( | EssentialPart & | essential, | |
Scalar & | tau, | |||
RealScalar & | beta | |||
) | const |
Computes the elementary reflector H such that: where the transformation H is: and the vector v is:
On output:
essential | the essential part of the vector v | |
tau | the scaling factor of the householder transformation | |
beta | the result of H * *this |
void MatrixBase< Derived >::makeHouseholderInPlace | ( | Scalar & | tau, | |
RealScalar & | beta | |||
) |
MatrixBase<Derived>& MatrixBase< Derived >::matrix | ( | ) | [inline] |
const MatrixBase<Derived>& MatrixBase< Derived >::matrix | ( | ) | const [inline] |
const MatrixFunctionReturnValue<Derived> MatrixBase< Derived >::matrixFunction | ( | StemFunction | f | ) | const |
NoAlias< Derived, MatrixBase > MatrixBase< Derived >::noalias | ( | ) |
*this
with an operator= assuming no aliasing between *this
and the source expression.More precisely, noalias() allows to bypass the EvalBeforeAssignBit flag. Currently, even though several expressions may alias, only product expressions have this flag. Therefore, noalias() is only usefull when the source expression contains a matrix product.
Here are some examples where noalias is usefull:
D.noalias() = A * B; D.noalias() += A.transpose() * B; D.noalias() -= 2 * A * B.adjoint();
On the other hand the following example will lead to a wrong result:
A.noalias() = A * B;
because the result matrix A is also an operand of the matrix product. Therefore, there is no alternative than evaluating A * B in a temporary, that is the default behavior when you write:
A = A * B;
NumTraits< typename internal::traits< Derived >::Scalar >::Real MatrixBase< Derived >::norm | ( | ) | const [inline] |
void MatrixBase< Derived >::normalize | ( | ) | [inline] |
Normalizes the vector, i.e. divides it by its own norm.
const MatrixBase< Derived >::PlainObject MatrixBase< Derived >::normalized | ( | ) | const [inline] |
bool MatrixBase< Derived >::operator!= | ( | const MatrixBase< OtherDerived > & | other | ) | const [inline] |
*this
and other are not exactly equal to each other. const ProductReturnType< Derived, OtherDerived >::Type MatrixBase< Derived >::operator* | ( | const MatrixBase< OtherDerived > & | other | ) | const [inline] |
*this
and other.const CwiseUnaryOp<internal::scalar_multiple2_op<Scalar,std::complex<Scalar> >, const Derived> MatrixBase< Derived >::operator* | ( | const std::complex< Scalar > & | scalar | ) | const [inline] |
Overloaded for efficient real matrix times complex scalar value
const DiagonalProduct< Derived, DiagonalDerived, OnTheRight > MatrixBase< Derived >::operator* | ( | const DiagonalBase< DiagonalDerived > & | diagonal | ) | const [inline] |
*this
by the diagonal matrix diagonal. const ScalarMultipleReturnType MatrixBase< Derived >::operator* | ( | const Scalar & | scalar | ) | const [inline] |
*this
scaled by the scalar factor scalar MatrixBase<Derived>::ScalarMultipleReturnType MatrixBase< Derived >::operator* | ( | const UniformScaling< Scalar > & | s | ) | const |
Concatenates a linear transformation matrix and a uniform scaling
Derived & MatrixBase< Derived >::operator*= | ( | const EigenBase< OtherDerived > & | other | ) | [inline] |
replaces *this
by *this
* other.
*this
EIGEN_STRONG_INLINE Derived & MatrixBase< Derived >::operator+= | ( | const MatrixBase< OtherDerived > & | other | ) |
replaces *this
by *this
+ other.
*this
Derived& MatrixBase< Derived >::operator+= | ( | const ArrayBase< OtherDerived > & | ) | [inline, protected] |
const CwiseUnaryOp<internal::scalar_opposite_op<typename internal::traits<Derived>::Scalar>, const Derived> MatrixBase< Derived >::operator- | ( | ) | const [inline] |
*this
EIGEN_STRONG_INLINE Derived & MatrixBase< Derived >::operator-= | ( | const MatrixBase< OtherDerived > & | other | ) |
replaces *this
by *this
- other.
*this
Derived& MatrixBase< Derived >::operator-= | ( | const ArrayBase< OtherDerived > & | ) | [inline, protected] |
const CwiseUnaryOp<internal::scalar_quotient1_op<typename internal::traits<Derived>::Scalar>, const Derived> MatrixBase< Derived >::operator/ | ( | const Scalar & | scalar | ) | const [inline] |
*this
divided by the scalar value scalar EIGEN_STRONG_INLINE Derived & MatrixBase< Derived >::operator= | ( | const DenseBase< OtherDerived > & | other | ) |
EIGEN_STRONG_INLINE Derived & MatrixBase< Derived >::operator= | ( | const ReturnByValue< OtherDerived > & | other | ) |
Reimplemented from DenseBase< Derived >.
EIGEN_STRONG_INLINE Derived & MatrixBase< Derived >::operator= | ( | const EigenBase< OtherDerived > & | other | ) |
Copies the generic expression other into *this.
The expression must provide a (templated) evalTo(Derived& dst) const function which does the actual job. In practice, this allows any user to write its own special matrix without having to modify MatrixBase
Reimplemented from DenseBase< Derived >.
EIGEN_STRONG_INLINE Derived & MatrixBase< Derived >::operator= | ( | const MatrixBase< Derived > & | other | ) |
Special case of the template operator=, in order to prevent the compiler from generating a default operator= (issue hit with g++ 4.1)
bool MatrixBase< Derived >::operator== | ( | const MatrixBase< OtherDerived > & | other | ) | const [inline] |
*this
and other are all exactly equal. MatrixBase< Derived >::RealScalar MatrixBase< Derived >::operatorNorm | ( | ) | const [inline] |
Computes the L2 operator norm.
This function computes the L2 operator norm of a matrix, which is also known as the spectral norm. The norm of a matrix is defined to be
where the maximum is over all vectors and the norm on the right is the Euclidean vector norm. The norm equals the largest singular value, which is the square root of the largest eigenvalue of the positive semi-definite matrix .
The current implementation uses the eigenvalues of , as computed by SelfAdjointView::eigenvalues(), to compute the operator norm of a matrix. The SelfAdjointView class provides a better algorithm for selfadjoint matrices.
Example:
Output:
const PartialPivLU< typename MatrixBase< Derived >::PlainObject > MatrixBase< Derived >::partialPivLu | ( | ) | const [inline] |
*this
.NonConstRealReturnType MatrixBase< Derived >::real | ( | ) | [inline] |
*this
.RealReturnType MatrixBase< Derived >::real | ( | ) | const [inline] |
*this
.MatrixBase< Derived >::template ConstSelfAdjointViewReturnType< UpLo >::Type MatrixBase< Derived >::selfadjointView | ( | ) | const |
MatrixBase< Derived >::template SelfAdjointViewReturnType< UpLo >::Type MatrixBase< Derived >::selfadjointView | ( | ) |
EIGEN_STRONG_INLINE Derived & MatrixBase< Derived >::setIdentity | ( | Index | rows, | |
Index | cols | |||
) |
Resizes to the given size, and writes the identity expression (not necessarily square) into *this.
rows | the new number of rows | |
cols | the new number of columns |
Example:
Output:
EIGEN_STRONG_INLINE Derived & MatrixBase< Derived >::setIdentity | ( | ) |
Writes the identity expression (not necessarily square) into *this.
Example:
Output:
const MatrixFunctionReturnValue<Derived> MatrixBase< Derived >::sin | ( | ) | const |
const MatrixFunctionReturnValue<Derived> MatrixBase< Derived >::sinh | ( | ) | const |
const SparseView< Derived > MatrixBase< Derived >::sparseView | ( | const Scalar & | m_reference = Scalar(0) , |
|
typename NumTraits< Scalar >::Real | m_epsilon = NumTraits<Scalar>::dummy_precision() | |||
) | const |
EIGEN_STRONG_INLINE NumTraits< typename internal::traits< Derived >::Scalar >::Real MatrixBase< Derived >::squaredNorm | ( | ) | const |
NumTraits< typename internal::traits< Derived >::Scalar >::Real MatrixBase< Derived >::stableNorm | ( | ) | const [inline] |
*this
avoiding underflow and overflow. This version use a blockwise two passes algorithm: 1 - find the absolute largest coefficient s
2 - compute in a standard wayFor architecture/scalar types supporting vectorization, this version is faster than blueNorm(). Otherwise the blueNorm() is much faster.
EIGEN_STRONG_INLINE internal::traits< Derived >::Scalar MatrixBase< Derived >::trace | ( | ) | const |
*this
, i.e. the sum of the coefficients on the main diagonal.*this
can be any matrix, not necessarily square.
Reimplemented from DenseBase< Derived >.
MatrixBase< Derived >::template ConstTriangularViewReturnType< Mode >::Type MatrixBase< Derived >::triangularView | ( | ) | const |
This is the const version of MatrixBase::triangularView()
MatrixBase< Derived >::template TriangularViewReturnType< Mode >::Type MatrixBase< Derived >::triangularView | ( | ) |
The parameter Mode can have the following values: Upper
, StrictlyUpper
, UnitUpper
, Lower
, StrictlyLower
, UnitLower
.
Example:
Output:
const CwiseUnaryOp<CustomUnaryOp, const Derived> MatrixBase< Derived >::unaryExpr | ( | const CustomUnaryOp & | func = CustomUnaryOp() |
) | const [inline] |
Apply a unary operator coefficient-wise.
[in] | func | Functor implementing the unary operator |
CustomUnaryOp | Type of func |
The function ptr_fun()
from the C++ standard library can be used to make functors out of normal functions.
Example:
Output:
Genuine functors allow for more possibilities, for instance it may contain a state.
Example:
Output:
const CwiseUnaryView<CustomViewOp, const Derived> MatrixBase< Derived >::unaryViewExpr | ( | const CustomViewOp & | func = CustomViewOp() |
) | const [inline] |
The template parameter CustomUnaryOp is the type of the functor of the custom unary operator.
Example:
Output:
EIGEN_STRONG_INLINE const MatrixBase< Derived >::BasisReturnType MatrixBase< Derived >::Unit | ( | Index | i | ) | [static] |
This variant is for fixed-size vector only.
EIGEN_STRONG_INLINE const MatrixBase< Derived >::BasisReturnType MatrixBase< Derived >::Unit | ( | Index | size, | |
Index | i | |||
) | [static] |
MatrixBase< Derived >::PlainObject MatrixBase< Derived >::unitOrthogonal | ( | void | ) | const |
*this
The size of *this
must be at least 2. If the size is exactly 2, then the returned vector is a counter clock wise rotation of *this
, i.e., (-y,x).normalized().
EIGEN_STRONG_INLINE const MatrixBase< Derived >::BasisReturnType MatrixBase< Derived >::UnitW | ( | ) | [static] |
EIGEN_STRONG_INLINE const MatrixBase< Derived >::BasisReturnType MatrixBase< Derived >::UnitX | ( | ) | [static] |
EIGEN_STRONG_INLINE const MatrixBase< Derived >::BasisReturnType MatrixBase< Derived >::UnitY | ( | ) | [static] |
EIGEN_STRONG_INLINE const MatrixBase< Derived >::BasisReturnType MatrixBase< Derived >::UnitZ | ( | ) | [static] |
const ScalarMultipleReturnType operator* | ( | const Scalar & | scalar, | |
const StorageBaseType & | matrix | |||
) | [friend] |
const CwiseUnaryOp<internal::scalar_multiple2_op<Scalar,std::complex<Scalar> >, const Derived> operator* | ( | const std::complex< Scalar > & | scalar, | |
const StorageBaseType & | matrix | |||
) | [friend] |