Householder rank-revealing QR decomposition of a matrix with full pivoting.
More...
#include <FullPivHouseholderQR.h>
List of all members.
Public Types |
enum | {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
Options = MatrixType::Options,
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
} |
typedef _MatrixType | MatrixType |
typedef MatrixType::Scalar | Scalar |
typedef MatrixType::RealScalar | RealScalar |
typedef MatrixType::Index | Index |
typedef Matrix< Scalar,
RowsAtCompileTime,
RowsAtCompileTime, Options,
MaxRowsAtCompileTime,
MaxRowsAtCompileTime > | MatrixQType |
typedef
internal::plain_diag_type
< MatrixType >::type | HCoeffsType |
typedef Matrix< Index,
1, ColsAtCompileTime, RowMajor,
1, MaxColsAtCompileTime > | IntRowVectorType |
typedef PermutationMatrix
< ColsAtCompileTime,
MaxColsAtCompileTime > | PermutationType |
typedef
internal::plain_col_type
< MatrixType, Index >::type | IntColVectorType |
typedef
internal::plain_row_type
< MatrixType >::type | RowVectorType |
typedef
internal::plain_col_type
< MatrixType >::type | ColVectorType |
Public Member Functions |
| FullPivHouseholderQR () |
| Default Constructor.
|
| FullPivHouseholderQR (Index rows, Index cols) |
| Default Constructor with memory preallocation.
|
| FullPivHouseholderQR (const MatrixType &matrix) |
template<typename Rhs > |
const internal::solve_retval
< FullPivHouseholderQR, Rhs > | solve (const MatrixBase< Rhs > &b) const |
MatrixQType | matrixQ (void) const |
const MatrixType & | matrixQR () const |
FullPivHouseholderQR & | compute (const MatrixType &matrix) |
const PermutationType & | colsPermutation () const |
const IntColVectorType & | rowsTranspositions () const |
MatrixType::RealScalar | absDeterminant () const |
MatrixType::RealScalar | logAbsDeterminant () const |
Index | rank () const |
Index | dimensionOfKernel () const |
bool | isInjective () const |
bool | isSurjective () const |
bool | isInvertible () const |
const internal::solve_retval
< FullPivHouseholderQR,
typename
MatrixType::IdentityReturnType > | inverse () const |
Index | rows () const |
Index | cols () const |
const HCoeffsType & | hCoeffs () const |
FullPivHouseholderQR & | setThreshold (const RealScalar &threshold) |
FullPivHouseholderQR & | setThreshold (Default_t) |
RealScalar | threshold () const |
Index | nonzeroPivots () const |
RealScalar | maxPivot () const |
Protected Attributes |
MatrixType | m_qr |
HCoeffsType | m_hCoeffs |
IntColVectorType | m_rows_transpositions |
IntRowVectorType | m_cols_transpositions |
PermutationType | m_cols_permutation |
RowVectorType | m_temp |
bool | m_isInitialized |
bool | m_usePrescribedThreshold |
RealScalar | m_prescribedThreshold |
RealScalar | m_maxpivot |
Index | m_nonzero_pivots |
RealScalar | m_precision |
Index | m_det_pq |
Detailed Description
template<typename _MatrixType>
class FullPivHouseholderQR< _MatrixType >
Householder rank-revealing QR decomposition of a matrix with full pivoting.
- Parameters:
-
| MatrixType | the type of the matrix of which we are computing the QR decomposition |
This class performs a rank-revealing QR decomposition of a matrix A into matrices P, Q and R such that
by using Householder transformations. Here, P is a permutation matrix, Q a unitary matrix and R an upper triangular matrix.
This decomposition performs a very prudent full pivoting in order to be rank-revealing and achieve optimal numerical stability. The trade-off is that it is slower than HouseholderQR and ColPivHouseholderQR.
- See also:
- MatrixBase::fullPivHouseholderQr()
Member Typedef Documentation
template<typename _MatrixType>
template<typename _MatrixType>
template<typename _MatrixType>
template<typename _MatrixType>
template<typename _MatrixType>
template<typename _MatrixType>
template<typename _MatrixType>
template<typename _MatrixType>
template<typename _MatrixType>
template<typename _MatrixType>
template<typename _MatrixType>
Member Enumeration Documentation
template<typename _MatrixType>
- Enumerator:
RowsAtCompileTime |
|
ColsAtCompileTime |
|
Options |
|
MaxRowsAtCompileTime |
|
MaxColsAtCompileTime |
|
Constructor & Destructor Documentation
template<typename _MatrixType>
template<typename _MatrixType>
Default Constructor with memory preallocation.
Like the default constructor but with preallocation of the internal data according to the specified problem size.
- See also:
- FullPivHouseholderQR()
template<typename _MatrixType>
Member Function Documentation
template<typename MatrixType >
- Returns:
- the absolute value of the determinant of the matrix of which *this is the QR decomposition. It has only linear complexity (that is, O(n) where n is the dimension of the square matrix) as the QR decomposition has already been computed.
- Note:
- This is only for square matrices.
- Warning:
- a determinant can be very big or small, so for matrices of large enough dimension, there is a risk of overflow/underflow. One way to work around that is to use logAbsDeterminant() instead.
- See also:
- logAbsDeterminant(), MatrixBase::determinant()
template<typename _MatrixType>
template<typename _MatrixType>
template<typename MatrixType >
template<typename _MatrixType>
- Returns:
- the dimension of the kernel of the matrix of which *this is the QR decomposition.
- Note:
- This method has to determine which pivots should be considered nonzero. For that, it uses the threshold value that you can control by calling setThreshold(const RealScalar&).
template<typename _MatrixType>
template<typename _MatrixType>
- Returns:
- the inverse of the matrix of which *this is the QR decomposition.
- Note:
- If this matrix is not invertible, the returned matrix has undefined coefficients. Use isInvertible() to first determine whether this matrix is invertible.
template<typename _MatrixType>
- Returns:
- true if the matrix of which *this is the QR decomposition represents an injective linear map, i.e. has trivial kernel; false otherwise.
- Note:
- This method has to determine which pivots should be considered nonzero. For that, it uses the threshold value that you can control by calling setThreshold(const RealScalar&).
template<typename _MatrixType>
- Returns:
- true if the matrix of which *this is the QR decomposition is invertible.
- Note:
- This method has to determine which pivots should be considered nonzero. For that, it uses the threshold value that you can control by calling setThreshold(const RealScalar&).
template<typename _MatrixType>
- Returns:
- true if the matrix of which *this is the QR decomposition represents a surjective linear map; false otherwise.
- Note:
- This method has to determine which pivots should be considered nonzero. For that, it uses the threshold value that you can control by calling setThreshold(const RealScalar&).
template<typename MatrixType >
- Returns:
- the natural log of the absolute value of the determinant of the matrix of which *this is the QR decomposition. It has only linear complexity (that is, O(n) where n is the dimension of the square matrix) as the QR decomposition has already been computed.
- Note:
- This is only for square matrices.
-
This method is useful to work around the risk of overflow/underflow that's inherent to determinant computation.
- See also:
- absDeterminant(), MatrixBase::determinant()
template<typename MatrixType >
template<typename _MatrixType>
- Returns:
- a reference to the matrix where the Householder QR decomposition is stored
template<typename _MatrixType>
- Returns:
- the absolute value of the biggest pivot, i.e. the biggest diagonal coefficient of U.
template<typename _MatrixType>
- Returns:
- the number of nonzero pivots in the QR decomposition. Here nonzero is meant in the exact sense, not in a fuzzy sense. So that notion isn't really intrinsically interesting, but it is still useful when implementing algorithms.
- See also:
- rank()
template<typename _MatrixType>
- Returns:
- the rank of the matrix of which *this is the QR decomposition.
- Note:
- This method has to determine which pivots should be considered nonzero. For that, it uses the threshold value that you can control by calling setThreshold(const RealScalar&).
template<typename _MatrixType>
template<typename _MatrixType>
template<typename _MatrixType>
Allows to come back to the default behavior, letting Eigen use its default formula for determining the threshold.
You should pass the special object Eigen::Default as parameter here.
qr.setThreshold(Eigen::Default);
See the documentation of setThreshold(const RealScalar&).
template<typename _MatrixType>
Allows to prescribe a threshold to be used by certain methods, such as rank(), who need to determine when pivots are to be considered nonzero. This is not used for the QR decomposition itself.
When it needs to get the threshold value, Eigen calls threshold(). By default, this uses a formula to automatically determine a reasonable threshold. Once you have called the present method setThreshold(const RealScalar&), your value is used instead.
- Parameters:
-
| threshold | The new value to use as the threshold. |
A pivot will be considered nonzero if its absolute value is strictly greater than where maxpivot is the biggest pivot.
If you want to come back to the default behavior, call setThreshold(Default_t)
template<typename _MatrixType>
template<typename Rhs >
This method finds a solution x to the equation Ax=b, where A is the matrix of which *this is the QR decomposition, if any exists.
- Parameters:
-
| b | the right-hand-side of the equation to solve. |
- Returns:
- a solution.
- Note:
- The case where b is a matrix is not yet implemented. Also, this code is space inefficient.
Example:
Output:
template<typename _MatrixType>
Member Data Documentation
template<typename _MatrixType>
template<typename _MatrixType>
template<typename _MatrixType>
template<typename _MatrixType>
template<typename _MatrixType>
template<typename _MatrixType>
template<typename _MatrixType>
template<typename _MatrixType>
template<typename _MatrixType>
template<typename _MatrixType>
template<typename _MatrixType>
template<typename _MatrixType>
template<typename _MatrixType>
The documentation for this class was generated from the following file: