Public Types | Public Member Functions | Protected Attributes

HouseholderQR< _MatrixType > Class Template Reference

Householder QR decomposition of a matrix. More...

#include <HouseholderQR.h>

List of all members.

Public Types

enum  {
  RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime, Options = MatrixType::Options, MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
  MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
}
typedef _MatrixType MatrixType
typedef MatrixType::Scalar Scalar
typedef MatrixType::RealScalar RealScalar
typedef MatrixType::Index Index
typedef Matrix< Scalar,
RowsAtCompileTime,
RowsAtCompileTime,(MatrixType::Flags
&RowMajorBit)?RowMajor:ColMajor,
MaxRowsAtCompileTime,
MaxRowsAtCompileTime > 
MatrixQType
typedef
internal::plain_diag_type
< MatrixType >::type 
HCoeffsType
typedef
internal::plain_row_type
< MatrixType >::type 
RowVectorType
typedef HouseholderSequence
< MatrixType, HCoeffsType >
::ConjugateReturnType 
HouseholderSequenceType

Public Member Functions

 HouseholderQR ()
 Default Constructor.
 HouseholderQR (Index rows, Index cols)
 Default Constructor with memory preallocation.
 HouseholderQR (const MatrixType &matrix)
template<typename Rhs >
const internal::solve_retval
< HouseholderQR, Rhs > 
solve (const MatrixBase< Rhs > &b) const
HouseholderSequenceType householderQ () const
const MatrixTypematrixQR () const
HouseholderQRcompute (const MatrixType &matrix)
MatrixType::RealScalar absDeterminant () const
MatrixType::RealScalar logAbsDeterminant () const
Index rows () const
Index cols () const
const HCoeffsTypehCoeffs () const

Protected Attributes

MatrixType m_qr
HCoeffsType m_hCoeffs
RowVectorType m_temp
bool m_isInitialized

Detailed Description

template<typename _MatrixType>
class HouseholderQR< _MatrixType >

Householder QR decomposition of a matrix.

Parameters:
MatrixType the type of the matrix of which we are computing the QR decomposition

This class performs a QR decomposition of a matrix A into matrices Q and R such that

\[ \mathbf{A} = \mathbf{Q} \, \mathbf{R} \]

by using Householder transformations. Here, Q a unitary matrix and R an upper triangular matrix. The result is stored in a compact way compatible with LAPACK.

Note that no pivoting is performed. This is not a rank-revealing decomposition. If you want that feature, use FullPivHouseholderQR or ColPivHouseholderQR instead.

This Householder QR decomposition is faster, but less numerically stable and less feature-full than FullPivHouseholderQR or ColPivHouseholderQR.

See also:
MatrixBase::householderQr()

Member Typedef Documentation

template<typename _MatrixType>
typedef internal::plain_diag_type<MatrixType>::type HouseholderQR< _MatrixType >::HCoeffsType
template<typename _MatrixType>
typedef HouseholderSequence<MatrixType,HCoeffsType>::ConjugateReturnType HouseholderQR< _MatrixType >::HouseholderSequenceType
template<typename _MatrixType>
typedef MatrixType::Index HouseholderQR< _MatrixType >::Index
template<typename _MatrixType>
typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, (MatrixType::Flags&RowMajorBit) ? RowMajor : ColMajor, MaxRowsAtCompileTime, MaxRowsAtCompileTime> HouseholderQR< _MatrixType >::MatrixQType
template<typename _MatrixType>
typedef _MatrixType HouseholderQR< _MatrixType >::MatrixType
template<typename _MatrixType>
typedef MatrixType::RealScalar HouseholderQR< _MatrixType >::RealScalar
template<typename _MatrixType>
typedef internal::plain_row_type<MatrixType>::type HouseholderQR< _MatrixType >::RowVectorType
template<typename _MatrixType>
typedef MatrixType::Scalar HouseholderQR< _MatrixType >::Scalar

Member Enumeration Documentation

template<typename _MatrixType>
anonymous enum
Enumerator:
RowsAtCompileTime 
ColsAtCompileTime 
Options 
MaxRowsAtCompileTime 
MaxColsAtCompileTime 

Constructor & Destructor Documentation

template<typename _MatrixType>
HouseholderQR< _MatrixType >::HouseholderQR (  )  [inline]

Default Constructor.

The default constructor is useful in cases in which the user intends to perform decompositions via HouseholderQR::compute(const MatrixType&).

template<typename _MatrixType>
HouseholderQR< _MatrixType >::HouseholderQR ( Index  rows,
Index  cols 
) [inline]

Default Constructor with memory preallocation.

Like the default constructor but with preallocation of the internal data according to the specified problem size.

See also:
HouseholderQR()
template<typename _MatrixType>
HouseholderQR< _MatrixType >::HouseholderQR ( const MatrixType matrix  )  [inline]

Member Function Documentation

template<typename _MatrixType>
MatrixType::RealScalar HouseholderQR< _MatrixType >::absDeterminant (  )  const
Returns:
the absolute value of the determinant of the matrix of which *this is the QR decomposition. It has only linear complexity (that is, O(n) where n is the dimension of the square matrix) as the QR decomposition has already been computed.
Note:
This is only for square matrices.
Warning:
a determinant can be very big or small, so for matrices of large enough dimension, there is a risk of overflow/underflow. One way to work around that is to use logAbsDeterminant() instead.
See also:
logAbsDeterminant(), MatrixBase::determinant()
template<typename _MatrixType>
Index HouseholderQR< _MatrixType >::cols ( void   )  const [inline]
template<typename _MatrixType>
HouseholderQR& HouseholderQR< _MatrixType >::compute ( const MatrixType matrix  ) 
template<typename _MatrixType>
const HCoeffsType& HouseholderQR< _MatrixType >::hCoeffs (  )  const [inline]
template<typename _MatrixType>
HouseholderSequenceType HouseholderQR< _MatrixType >::householderQ ( void   )  const [inline]
template<typename _MatrixType>
MatrixType::RealScalar HouseholderQR< _MatrixType >::logAbsDeterminant (  )  const
Returns:
the natural log of the absolute value of the determinant of the matrix of which *this is the QR decomposition. It has only linear complexity (that is, O(n) where n is the dimension of the square matrix) as the QR decomposition has already been computed.
Note:
This is only for square matrices.
This method is useful to work around the risk of overflow/underflow that's inherent to determinant computation.
See also:
absDeterminant(), MatrixBase::determinant()
template<typename _MatrixType>
const MatrixType& HouseholderQR< _MatrixType >::matrixQR (  )  const [inline]
Returns:
a reference to the matrix where the Householder QR decomposition is stored in a LAPACK-compatible way.
template<typename _MatrixType>
Index HouseholderQR< _MatrixType >::rows ( void   )  const [inline]
template<typename _MatrixType>
template<typename Rhs >
const internal::solve_retval<HouseholderQR, Rhs> HouseholderQR< _MatrixType >::solve ( const MatrixBase< Rhs > &  b  )  const [inline]

This method finds a solution x to the equation Ax=b, where A is the matrix of which *this is the QR decomposition, if any exists.

Parameters:
b the right-hand-side of the equation to solve.
Returns:
a solution.
Note:
The case where b is a matrix is not yet implemented. Also, this code is space inefficient.

Example:

Output:


Member Data Documentation

template<typename _MatrixType>
HCoeffsType HouseholderQR< _MatrixType >::m_hCoeffs [protected]
template<typename _MatrixType>
bool HouseholderQR< _MatrixType >::m_isInitialized [protected]
template<typename _MatrixType>
MatrixType HouseholderQR< _MatrixType >::m_qr [protected]
template<typename _MatrixType>
RowVectorType HouseholderQR< _MatrixType >::m_temp [protected]

The documentation for this class was generated from the following file: