Functions | |
template<class T > | |
T | hypot (T const &a, T const &b) |
template<typename ME > | |
void | svd_impl1 (ublas::matrix_expression< ME > const &AE, ublas::matrix< typename ME::value_type > &U, ublas::vector< typename ME::value_type > &s, ublas::matrix< typename ME::value_type > &V) |
template<typename ME > | |
void | svd_impl_atlas (ublas::matrix_expression< ME > const &A, ublas::matrix< typename ME::value_type, ublas::column_major > &U, ublas::vector< typename ME::value_type > &s, ublas::matrix< typename ME::value_type, ublas::column_major > &VT) |
T OpenTissue::math::big::details::hypot | ( | T const & | a, | |
T const & | b | |||
) | [inline] |
Hypotenuse.
a | A real value | |
b | A real vlaue |
void OpenTissue::math::big::details::svd_impl1 | ( | ublas::matrix_expression< ME > const & | AE, | |
ublas::matrix< typename ME::value_type > & | U, | |||
ublas::vector< typename ME::value_type > & | s, | |||
ublas::matrix< typename ME::value_type > & | V | |||
) | [inline] |
Compute Singular Value Decomposition of a matrix.
A = U S VT
For an m-by-n matrix A with m >= n, the singular value decomposition is an m-by-n orthogonal matrix U, an n-by-n diagonal matrix S, and an n-by-n orthogonal matrix V so that A = U*S*V'.
The singular values, sigma(k) = S(k,k), are ordered so that sigma(0) >= sigma(1) >= ... >= sigma(n-1).
The singular value decompostion always exists, so the constructor will never fail. The matrix condition number and the effective numerical rank can be computed from this decomposition.
(Adapted from JAMA, a Java Matrix Library, developed by jointly by the Mathworks and NIST; see http://math.nist.gov/javanumerics/jama).
AE | The input matrix. | |
U | Upon return this matrix holds orthogonal columns. | |
s | A vector containing the singular values. | |
V | Upon return this matrix is an orthogonal matrix. |
void OpenTissue::math::big::details::svd_impl_atlas | ( | ublas::matrix_expression< ME > const & | A, | |
ublas::matrix< typename ME::value_type, ublas::column_major > & | U, | |||
ublas::vector< typename ME::value_type > & | s, | |||
ublas::matrix< typename ME::value_type, ublas::column_major > & | VT | |||
) | [inline] |
Compute Singular Value Decomposition of a matrix.
A = U S VT
A | The matrix. | |
U | Upon return this matrix holds orthogonal columns. | |
s | A vector containing the singular values. | |
VT | Upon return this matrix is an orthogonal matrix. |