Public Types | Public Member Functions | Protected Attributes

LLT< _MatrixType, _UpLo > Class Template Reference

Standard Cholesky decomposition (LL^T) of a matrix and associated features. More...

#include <LLT.h>

List of all members.

Public Types

enum  { RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime, Options = MatrixType::Options, MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime }
enum  { PacketSize = internal::packet_traits<Scalar>::size, AlignmentMask = int(PacketSize)-1, UpLo = _UpLo }
typedef _MatrixType MatrixType
typedef MatrixType::Scalar Scalar
typedef NumTraits< typename
MatrixType::Scalar >::Real 
RealScalar
typedef MatrixType::Index Index
typedef internal::LLT_Traits
< MatrixType, UpLo > 
Traits

Public Member Functions

 LLT ()
 Default Constructor.
 LLT (Index size)
 Default Constructor with memory preallocation.
 LLT (const MatrixType &matrix)
Traits::MatrixU matrixU () const
Traits::MatrixL matrixL () const
template<typename Rhs >
const internal::solve_retval
< LLT, Rhs > 
solve (const MatrixBase< Rhs > &b) const
template<typename Derived >
void solveInPlace (MatrixBase< Derived > &bAndX) const
LLTcompute (const MatrixType &matrix)
const MatrixTypematrixLLT () const
MatrixType reconstructedMatrix () const
ComputationInfo info () const
 Reports whether previous computation was successful.
Index rows () const
Index cols () const

Protected Attributes

MatrixType m_matrix
bool m_isInitialized
ComputationInfo m_info

Detailed Description

template<typename _MatrixType, int _UpLo>
class LLT< _MatrixType, _UpLo >

Standard Cholesky decomposition (LL^T) of a matrix and associated features.

Parameters:
MatrixType the type of the matrix of which we are computing the LL^T Cholesky decomposition

This class performs a LL^T Cholesky decomposition of a symmetric, positive definite matrix A such that A = LL^* = U^*U, where L is lower triangular.

While the Cholesky decomposition is particularly useful to solve selfadjoint problems like D^*D x = b, for that purpose, we recommend the Cholesky decomposition without square root which is more stable and even faster. Nevertheless, this standard Cholesky decomposition remains useful in many other situations like generalised eigen problems with hermitian matrices.

Remember that Cholesky decompositions are not rank-revealing. This LLT decomposition is only stable on positive definite matrices, use LDLT instead for the semidefinite case. Also, do not use a Cholesky decomposition to determine whether a system of equations has a solution.

See also:
MatrixBase::llt(), class LDLT

Member Typedef Documentation

template<typename _MatrixType, int _UpLo>
typedef MatrixType::Index LLT< _MatrixType, _UpLo >::Index
template<typename _MatrixType, int _UpLo>
typedef _MatrixType LLT< _MatrixType, _UpLo >::MatrixType
template<typename _MatrixType, int _UpLo>
typedef NumTraits<typename MatrixType::Scalar>::Real LLT< _MatrixType, _UpLo >::RealScalar
template<typename _MatrixType, int _UpLo>
typedef MatrixType::Scalar LLT< _MatrixType, _UpLo >::Scalar
template<typename _MatrixType, int _UpLo>
typedef internal::LLT_Traits<MatrixType,UpLo> LLT< _MatrixType, _UpLo >::Traits

Member Enumeration Documentation

template<typename _MatrixType, int _UpLo>
anonymous enum
Enumerator:
RowsAtCompileTime 
ColsAtCompileTime 
Options 
MaxColsAtCompileTime 
template<typename _MatrixType, int _UpLo>
anonymous enum
Enumerator:
PacketSize 
AlignmentMask 
UpLo 

Constructor & Destructor Documentation

template<typename _MatrixType, int _UpLo>
LLT< _MatrixType, _UpLo >::LLT (  )  [inline]

Default Constructor.

The default constructor is useful in cases in which the user intends to perform decompositions via LLT::compute(const MatrixType&).

template<typename _MatrixType, int _UpLo>
LLT< _MatrixType, _UpLo >::LLT ( Index  size  )  [inline]

Default Constructor with memory preallocation.

Like the default constructor but with preallocation of the internal data according to the specified problem size.

See also:
LLT()
template<typename _MatrixType, int _UpLo>
LLT< _MatrixType, _UpLo >::LLT ( const MatrixType matrix  )  [inline]

Member Function Documentation

template<typename _MatrixType, int _UpLo>
Index LLT< _MatrixType, _UpLo >::cols (  )  const [inline]
template<typename MatrixType , int _UpLo>
LLT< MatrixType, _UpLo > & LLT< MatrixType, _UpLo >::compute ( const MatrixType a  ) 

Computes / recomputes the Cholesky decomposition A = LL^* = U^*U of matrix

Returns:
a reference to *this
template<typename _MatrixType, int _UpLo>
ComputationInfo LLT< _MatrixType, _UpLo >::info (  )  const [inline]

Reports whether previous computation was successful.

Returns:
Success if computation was succesful, NumericalIssue if the matrix.appears to be negative.
template<typename _MatrixType, int _UpLo>
Traits::MatrixL LLT< _MatrixType, _UpLo >::matrixL (  )  const [inline]
Returns:
a view of the lower triangular matrix L
template<typename _MatrixType, int _UpLo>
const MatrixType& LLT< _MatrixType, _UpLo >::matrixLLT (  )  const [inline]
Returns:
the LLT decomposition matrix

TODO: document the storage layout

template<typename _MatrixType, int _UpLo>
Traits::MatrixU LLT< _MatrixType, _UpLo >::matrixU (  )  const [inline]
Returns:
a view of the upper triangular matrix U
template<typename MatrixType , int _UpLo>
MatrixType LLT< MatrixType, _UpLo >::reconstructedMatrix (  )  const
Returns:
the matrix represented by the decomposition, i.e., it returns the product: L L^*. This function is provided for debug purpose.
template<typename _MatrixType, int _UpLo>
Index LLT< _MatrixType, _UpLo >::rows (  )  const [inline]
template<typename _MatrixType, int _UpLo>
template<typename Rhs >
const internal::solve_retval<LLT, Rhs> LLT< _MatrixType, _UpLo >::solve ( const MatrixBase< Rhs > &  b  )  const [inline]
Returns:
the solution x of $ A x = b $ using the current decomposition of A.

Since this LLT class assumes anyway that the matrix A is invertible, the solution theoretically exists and is unique regardless of b.

Example:

Output:

See also:
solveInPlace(), MatrixBase::llt()
template<typename MatrixType , int _UpLo>
template<typename Derived >
void LLT< MatrixType, _UpLo >::solveInPlace ( MatrixBase< Derived > &  bAndX  )  const

Member Data Documentation

template<typename _MatrixType, int _UpLo>
ComputationInfo LLT< _MatrixType, _UpLo >::m_info [protected]
template<typename _MatrixType, int _UpLo>
bool LLT< _MatrixType, _UpLo >::m_isInitialized [protected]
template<typename _MatrixType, int _UpLo>
MatrixType LLT< _MatrixType, _UpLo >::m_matrix [protected]

The documentation for this class was generated from the following file: