Go to the documentation of this file.00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025 #ifndef EIGEN_ANGLEAXIS_H
00026 #define EIGEN_ANGLEAXIS_H
00027
00054 namespace internal {
00055 template<typename _Scalar> struct traits<AngleAxis<_Scalar> >
00056 {
00057 typedef _Scalar Scalar;
00058 };
00059 }
00060
00061 template<typename _Scalar>
00062 class AngleAxis : public RotationBase<AngleAxis<_Scalar>,3>
00063 {
00064 typedef RotationBase<AngleAxis<_Scalar>,3> Base;
00065
00066 public:
00067
00068 using Base::operator*;
00069
00070 enum { Dim = 3 };
00072 typedef _Scalar Scalar;
00073 typedef Matrix<Scalar,3,3> Matrix3;
00074 typedef Matrix<Scalar,3,1> Vector3;
00075 typedef Quaternion<Scalar> QuaternionType;
00076
00077 protected:
00078
00079 Vector3 m_axis;
00080 Scalar m_angle;
00081
00082 public:
00083
00085 AngleAxis() {}
00091 template<typename Derived>
00092 inline AngleAxis(Scalar angle, const MatrixBase<Derived>& axis) : m_axis(axis), m_angle(angle) {}
00094 template<typename QuatDerived> inline explicit AngleAxis(const QuaternionBase<QuatDerived>& q) { *this = q; }
00096 template<typename Derived>
00097 inline explicit AngleAxis(const MatrixBase<Derived>& m) { *this = m; }
00098
00099 Scalar angle() const { return m_angle; }
00100 Scalar& angle() { return m_angle; }
00101
00102 const Vector3& axis() const { return m_axis; }
00103 Vector3& axis() { return m_axis; }
00104
00106 inline QuaternionType operator* (const AngleAxis& other) const
00107 { return QuaternionType(*this) * QuaternionType(other); }
00108
00110 inline QuaternionType operator* (const QuaternionType& other) const
00111 { return QuaternionType(*this) * other; }
00112
00114 friend inline QuaternionType operator* (const QuaternionType& a, const AngleAxis& b)
00115 { return a * QuaternionType(b); }
00116
00118 AngleAxis inverse() const
00119 { return AngleAxis(-m_angle, m_axis); }
00120
00121 template<class QuatDerived>
00122 AngleAxis& operator=(const QuaternionBase<QuatDerived>& q);
00123 template<typename Derived>
00124 AngleAxis& operator=(const MatrixBase<Derived>& m);
00125
00126 template<typename Derived>
00127 AngleAxis& fromRotationMatrix(const MatrixBase<Derived>& m);
00128 Matrix3 toRotationMatrix(void) const;
00129
00135 template<typename NewScalarType>
00136 inline typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type cast() const
00137 { return typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type(*this); }
00138
00140 template<typename OtherScalarType>
00141 inline explicit AngleAxis(const AngleAxis<OtherScalarType>& other)
00142 {
00143 m_axis = other.axis().template cast<Scalar>();
00144 m_angle = Scalar(other.angle());
00145 }
00146
00147 inline static const AngleAxis Identity() { return AngleAxis(0, Vector3::UnitX()); }
00148
00153 bool isApprox(const AngleAxis& other, typename NumTraits<Scalar>::Real prec = NumTraits<Scalar>::dummy_precision()) const
00154 { return m_axis.isApprox(other.m_axis, prec) && internal::isApprox(m_angle,other.m_angle, prec); }
00155 };
00156
00159 typedef AngleAxis<float> AngleAxisf;
00162 typedef AngleAxis<double> AngleAxisd;
00163
00170 template<typename Scalar>
00171 template<typename QuatDerived>
00172 AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const QuaternionBase<QuatDerived>& q)
00173 {
00174 Scalar n2 = q.vec().squaredNorm();
00175 if (n2 < NumTraits<Scalar>::dummy_precision()*NumTraits<Scalar>::dummy_precision())
00176 {
00177 m_angle = 0;
00178 m_axis << 1, 0, 0;
00179 }
00180 else
00181 {
00182 m_angle = Scalar(2)*std::acos(std::min(std::max(Scalar(-1),q.w()),Scalar(1)));
00183 m_axis = q.vec() / internal::sqrt(n2);
00184 }
00185 return *this;
00186 }
00187
00190 template<typename Scalar>
00191 template<typename Derived>
00192 AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const MatrixBase<Derived>& mat)
00193 {
00194
00195
00196 return *this = QuaternionType(mat);
00197 }
00198
00202 template<typename Scalar>
00203 template<typename Derived>
00204 AngleAxis<Scalar>& AngleAxis<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat)
00205 {
00206 return *this = QuaternionType(mat);
00207 }
00208
00211 template<typename Scalar>
00212 typename AngleAxis<Scalar>::Matrix3
00213 AngleAxis<Scalar>::toRotationMatrix(void) const
00214 {
00215 Matrix3 res;
00216 Vector3 sin_axis = internal::sin(m_angle) * m_axis;
00217 Scalar c = internal::cos(m_angle);
00218 Vector3 cos1_axis = (Scalar(1)-c) * m_axis;
00219
00220 Scalar tmp;
00221 tmp = cos1_axis.x() * m_axis.y();
00222 res.coeffRef(0,1) = tmp - sin_axis.z();
00223 res.coeffRef(1,0) = tmp + sin_axis.z();
00224
00225 tmp = cos1_axis.x() * m_axis.z();
00226 res.coeffRef(0,2) = tmp + sin_axis.y();
00227 res.coeffRef(2,0) = tmp - sin_axis.y();
00228
00229 tmp = cos1_axis.y() * m_axis.z();
00230 res.coeffRef(1,2) = tmp - sin_axis.x();
00231 res.coeffRef(2,1) = tmp + sin_axis.x();
00232
00233 res.diagonal() = (cos1_axis.cwiseProduct(m_axis)).array() + c;
00234
00235 return res;
00236 }
00237
00238 #endif // EIGEN_ANGLEAXIS_H