#include <Quaternion.h>
Public Types | |
typedef internal::traits < Derived >::Scalar | Scalar |
typedef NumTraits< Scalar >::Real | RealScalar |
typedef internal::traits < Derived >::Coefficients | Coefficients |
typedef Matrix< Scalar, 3, 1 > | Vector3 |
typedef Matrix< Scalar, 3, 3 > | Matrix3 |
typedef AngleAxis< Scalar > | AngleAxisType |
Public Member Functions | |
Scalar | x () const |
Scalar | y () const |
Scalar | z () const |
Scalar | w () const |
Scalar & | x () |
Scalar & | y () |
Scalar & | z () |
Scalar & | w () |
const VectorBlock< const Coefficients, 3 > | vec () const |
VectorBlock< Coefficients, 3 > | vec () |
const internal::traits < Derived >::Coefficients & | coeffs () const |
internal::traits< Derived > ::Coefficients & | coeffs () |
EIGEN_STRONG_INLINE QuaternionBase< Derived > & | operator= (const QuaternionBase< Derived > &other) |
template<class OtherDerived > | |
EIGEN_STRONG_INLINE Derived & | operator= (const QuaternionBase< OtherDerived > &other) |
Derived & | operator= (const AngleAxisType &aa) |
template<class OtherDerived > | |
Derived & | operator= (const MatrixBase< OtherDerived > &m) |
QuaternionBase & | setIdentity () |
Scalar | squaredNorm () const |
Scalar | norm () const |
void | normalize () |
Quaternion< Scalar > | normalized () const |
template<class OtherDerived > | |
Scalar | dot (const QuaternionBase< OtherDerived > &other) const |
template<class OtherDerived > | |
Scalar | angularDistance (const QuaternionBase< OtherDerived > &other) const |
Matrix3 | toRotationMatrix () const |
template<typename Derived1 , typename Derived2 > | |
Derived & | setFromTwoVectors (const MatrixBase< Derived1 > &a, const MatrixBase< Derived2 > &b) |
template<class OtherDerived > | |
EIGEN_STRONG_INLINE Quaternion < Scalar > | operator* (const QuaternionBase< OtherDerived > &q) const |
template<class OtherDerived > | |
EIGEN_STRONG_INLINE Derived & | operator*= (const QuaternionBase< OtherDerived > &q) |
Quaternion< Scalar > | inverse () const |
Quaternion< Scalar > | conjugate () const |
template<class OtherDerived > | |
Quaternion< Scalar > | slerp (Scalar t, const QuaternionBase< OtherDerived > &other) const |
template<class OtherDerived > | |
bool | isApprox (const QuaternionBase< OtherDerived > &other, RealScalar prec=NumTraits< Scalar >::dummy_precision()) const |
EIGEN_STRONG_INLINE Vector3 | _transformVector (Vector3 v) const |
template<typename NewScalarType > | |
internal::cast_return_type < Derived, Quaternion < NewScalarType > >::type | cast () const |
template<class MatrixDerived > | |
Derived & | operator= (const MatrixBase< MatrixDerived > &xpr) |
Static Public Member Functions | |
static Quaternion< Scalar > | Identity () |
typedef AngleAxis<Scalar> QuaternionBase< Derived >::AngleAxisType |
the equivalent angle-axis type
typedef internal::traits<Derived>::Coefficients QuaternionBase< Derived >::Coefficients |
Reimplemented in Map< const Quaternion< _Scalar >, PacketAccess >, and Map< Quaternion< _Scalar >, PacketAccess >.
typedef Matrix<Scalar,3,3> QuaternionBase< Derived >::Matrix3 |
the equivalent rotation matrix type
typedef NumTraits<Scalar>::Real QuaternionBase< Derived >::RealScalar |
typedef internal::traits<Derived>::Scalar QuaternionBase< Derived >::Scalar |
the scalar type of the coefficients
Reimplemented from RotationBase< Derived, 3 >.
Reimplemented in Map< const Quaternion< _Scalar >, PacketAccess >, and Map< Quaternion< _Scalar >, PacketAccess >.
typedef Matrix<Scalar,3,1> QuaternionBase< Derived >::Vector3 |
the type of a 3D vector
EIGEN_STRONG_INLINE QuaternionBase< Derived >::Vector3 QuaternionBase< Derived >::_transformVector | ( | Vector3 | v | ) | const |
return the result vector of v through the rotation
Rotation of a vector by a quaternion.
internal::traits< Derived >::Scalar QuaternionBase< Derived >::angularDistance | ( | const QuaternionBase< OtherDerived > & | other | ) | const [inline] |
internal::cast_return_type<Derived,Quaternion<NewScalarType> >::type QuaternionBase< Derived >::cast | ( | ) | const [inline] |
*this
with scalar type casted to NewScalarType Note that if NewScalarType is equal to the current scalar type of *this
then this function smartly returns a const reference to *this
.
const internal::traits<Derived>::Coefficients& QuaternionBase< Derived >::coeffs | ( | ) | const [inline] |
Reimplemented in Map< const Quaternion< _Scalar >, PacketAccess >, and Map< Quaternion< _Scalar >, PacketAccess >.
internal::traits<Derived>::Coefficients& QuaternionBase< Derived >::coeffs | ( | ) | [inline] |
Reimplemented in Map< Quaternion< _Scalar >, PacketAccess >.
Quaternion< typename internal::traits< Derived >::Scalar > QuaternionBase< Derived >::conjugate | ( | void | ) | const [inline] |
*this
which is equal to the multiplicative inverse if the quaternion is normalized. The conjugate of a quaternion represents the opposite rotation.Scalar QuaternionBase< Derived >::dot | ( | const QuaternionBase< OtherDerived > & | other | ) | const [inline] |
*this
and other Geometrically speaking, the dot product of two unit quaternions corresponds to the cosine of half the angle between the two rotations. static Quaternion<Scalar> QuaternionBase< Derived >::Identity | ( | ) | [inline, static] |
Quaternion< typename internal::traits< Derived >::Scalar > QuaternionBase< Derived >::inverse | ( | void | ) | const [inline] |
*this
Note that in most cases, i.e., if you simply want the opposite rotation, and/or the quaternion is normalized, then it is enough to use the conjugate.Reimplemented from RotationBase< Derived, 3 >.
bool QuaternionBase< Derived >::isApprox | ( | const QuaternionBase< OtherDerived > & | other, | |
RealScalar | prec = NumTraits<Scalar>::dummy_precision() | |||
) | const [inline] |
true
if *this
is approximately equal to other, within the precision determined by prec.Scalar QuaternionBase< Derived >::norm | ( | ) | const [inline] |
void QuaternionBase< Derived >::normalize | ( | void | ) | [inline] |
Normalizes the quaternion *this
Quaternion<Scalar> QuaternionBase< Derived >::normalized | ( | ) | const [inline] |
*this
EIGEN_STRONG_INLINE Quaternion< typename internal::traits< Derived >::Scalar > QuaternionBase< Derived >::operator* | ( | const QuaternionBase< OtherDerived > & | other | ) | const |
EIGEN_STRONG_INLINE Derived & QuaternionBase< Derived >::operator*= | ( | const QuaternionBase< OtherDerived > & | other | ) |
Derived& QuaternionBase< Derived >::operator= | ( | const MatrixBase< OtherDerived > & | m | ) |
Derived& QuaternionBase< Derived >::operator= | ( | const MatrixBase< MatrixDerived > & | xpr | ) | [inline] |
Set *this
from the expression xpr:
EIGEN_STRONG_INLINE QuaternionBase< Derived > & QuaternionBase< Derived >::operator= | ( | const QuaternionBase< Derived > & | other | ) |
EIGEN_STRONG_INLINE Derived & QuaternionBase< Derived >::operator= | ( | const QuaternionBase< OtherDerived > & | other | ) |
EIGEN_STRONG_INLINE Derived & QuaternionBase< Derived >::operator= | ( | const AngleAxisType & | aa | ) |
Set *this
from an angle-axis aa and returns a reference to *this
Derived & QuaternionBase< Derived >::setFromTwoVectors | ( | const MatrixBase< Derived1 > & | a, | |
const MatrixBase< Derived2 > & | b | |||
) | [inline] |
Sets *this
to be a quaternion representing a rotation between the two arbitrary vectors a and b. In other words, the built rotation represent a rotation sending the line of direction a to the line of direction b, both lines passing through the origin.
*this
.Note that the two input vectors do not have to be normalized, and do not need to have the same norm.
QuaternionBase& QuaternionBase< Derived >::setIdentity | ( | ) | [inline] |
Quaternion< typename internal::traits< Derived >::Scalar > QuaternionBase< Derived >::slerp | ( | Scalar | t, | |
const QuaternionBase< OtherDerived > & | other | |||
) | const |
*this
t in [0;1] see http://en.wikipedia.org/wiki/Slerp*this
and other at the parameter t Scalar QuaternionBase< Derived >::squaredNorm | ( | ) | const [inline] |
QuaternionBase< Derived >::Matrix3 QuaternionBase< Derived >::toRotationMatrix | ( | void | ) | const [inline] |
Convert the quaternion to a 3x3 rotation matrix. The quaternion is required to be normalized, otherwise the result is undefined.
Reimplemented from RotationBase< Derived, 3 >.
const VectorBlock<const Coefficients,3> QuaternionBase< Derived >::vec | ( | ) | const [inline] |
VectorBlock<Coefficients,3> QuaternionBase< Derived >::vec | ( | ) | [inline] |
Scalar& QuaternionBase< Derived >::w | ( | ) | [inline] |
w
coefficient Scalar QuaternionBase< Derived >::w | ( | ) | const [inline] |
w
coefficient Scalar QuaternionBase< Derived >::x | ( | ) | const [inline] |
x
coefficient Scalar& QuaternionBase< Derived >::x | ( | ) | [inline] |
x
coefficient Scalar QuaternionBase< Derived >::y | ( | ) | const [inline] |
y
coefficient Scalar& QuaternionBase< Derived >::y | ( | ) | [inline] |
y
coefficient Scalar QuaternionBase< Derived >::z | ( | ) | const [inline] |
z
coefficient Scalar& QuaternionBase< Derived >::z | ( | ) | [inline] |
z
coefficient