shark::SparseAutoencoderError Class Reference

Error Function for Autoencoders and TiedAutoencoders which should be trained with sparse activation of the hidden neurons. More...

#include <shark/ObjectiveFunctions/SparseAutoencoderError.h>

+ Inheritance diagram for shark::SparseAutoencoderError:

Public Types

typedef LabeledData< RealVector, RealVector > DatasetType
 
- Public Types inherited from shark::AbstractObjectiveFunction< PointType, ResultT >
enum  Feature {
  HAS_VALUE = 1, HAS_FIRST_DERIVATIVE = 2, HAS_SECOND_DERIVATIVE = 4, CAN_PROPOSE_STARTING_POINT = 8,
  IS_CONSTRAINED_FEATURE = 16, HAS_CONSTRAINT_HANDLER = 32, CAN_PROVIDE_CLOSEST_FEASIBLE = 64, IS_THREAD_SAFE = 128,
  IS_NOISY = 256
}
 List of features that are supported by an implementation. More...
 
typedef PointType SearchPointType
 
typedef ResultT ResultType
 
typedef boost::mpl::if_< std::is_arithmetic< ResultT >, SearchPointType, RealMatrix >::type FirstOrderDerivative
 
typedef TypedFlags< FeatureFeatures
 This statement declares the member m_features. See Core/Flags.h for details. More...
 
typedef TypedFeatureNotAvailableException< FeatureFeatureNotAvailableException
 

Public Member Functions

template<class HiddenNeuron , class OutputNeuron >
 SparseAutoencoderError (DatasetType const &dataset, Autoencoder< HiddenNeuron, OutputNeuron > *model, AbstractLoss< RealVector, RealVector > *loss, double rho=0.5, double beta=0.1)
 
template<class HiddenNeuron , class OutputNeuron >
 SparseAutoencoderError (DatasetType const &dataset, TiedAutoencoder< HiddenNeuron, OutputNeuron > *model, AbstractLoss< RealVector, RealVector > *loss, double rho=0.5, double beta=0.1)
 
SparseAutoencoderErroroperator= (SparseAutoencoderError const &op)
 
std::string name () const
 From INameable: return the class name. More...
 
std::size_t numberOfVariables () const
 Accesses the number of variables. More...
 
SearchPointType proposeStartingPoint () const
 Proposes a starting point in the feasible search space of the function. More...
 
void setRegularizer (double factor, SingleObjectiveFunction *regularizer)
 
double eval (RealVector const &input) const
 
ResultType evalDerivative (SearchPointType const &input, FirstOrderDerivative &derivative) const
 Evaluates the objective function and calculates its gradient. More...
 
- Public Member Functions inherited from shark::AbstractObjectiveFunction< PointType, ResultT >
const Featuresfeatures () const
 
virtual void updateFeatures ()
 
bool hasValue () const
 returns whether this function can calculate it's function value More...
 
bool hasFirstDerivative () const
 returns whether this function can calculate the first derivative More...
 
bool hasSecondDerivative () const
 returns whether this function can calculate the second derivative More...
 
bool canProposeStartingPoint () const
 returns whether this function can propose a starting point. More...
 
bool isConstrained () const
 returns whether this function can return More...
 
bool hasConstraintHandler () const
 returns whether this function can return More...
 
bool canProvideClosestFeasible () const
 Returns whether this function can calculate thee closest feasible to an infeasible point. More...
 
bool isThreadSafe () const
 Returns true, when the function can be usd in parallel threads. More...
 
bool isNoisy () const
 Returns true, when the function can be usd in parallel threads. More...
 
 AbstractObjectiveFunction ()
 Default ctor. More...
 
virtual ~AbstractObjectiveFunction ()
 Virtual destructor. More...
 
virtual void init ()
 
void setRng (random::rng_type *rng)
 Sets the Rng used by the objective function. More...
 
virtual bool hasScalableDimensionality () const
 
virtual void setNumberOfVariables (std::size_t numberOfVariables)
 Adjusts the number of variables if the function is scalable. More...
 
virtual std::size_t numberOfObjectives () const
 
virtual bool hasScalableObjectives () const
 
virtual void setNumberOfObjectives (std::size_t numberOfObjectives)
 Adjusts the number of objectives if the function is scalable. More...
 
std::size_t evaluationCounter () const
 Accesses the evaluation counter of the function. More...
 
AbstractConstraintHandler< SearchPointType > const & getConstraintHandler () const
 Returns the constraint handler of the function if it has one. More...
 
virtual bool isFeasible (const SearchPointType &input) const
 Tests whether a point in SearchSpace is feasible, e.g., whether the constraints are fulfilled. More...
 
virtual void closestFeasible (SearchPointType &input) const
 If supported, the supplied point is repaired such that it satisfies all of the function's constraints. More...
 
virtual ResultType eval (SearchPointType const &input) const
 Evaluates the objective function for the supplied argument. More...
 
ResultType operator() (SearchPointType const &input) const
 Evaluates the function. Useful together with STL-Algorithms like std::transform. More...
 
virtual ResultType evalDerivative (SearchPointType const &input, SecondOrderDerivative &derivative) const
 Evaluates the objective function and calculates its gradient. More...
 
- Public Member Functions inherited from shark::INameable
virtual ~INameable ()
 

Friends

void swap (SparseAutoencoderError &op1, SparseAutoencoderError &op2)
 

Additional Inherited Members

- Protected Member Functions inherited from shark::AbstractObjectiveFunction< PointType, ResultT >
void announceConstraintHandler (AbstractConstraintHandler< SearchPointType > const *handler)
 helper function which is called to announce the presence of an constraint handler. More...
 
- Protected Attributes inherited from shark::AbstractObjectiveFunction< PointType, ResultT >
Features m_features
 
std::size_t m_evaluationCounter
 Evaluation counter, default value: 0. More...
 
AbstractConstraintHandler< SearchPointType > const * m_constraintHandler
 
random::rng_type * mep_rng
 

Detailed Description

Error Function for Autoencoders and TiedAutoencoders which should be trained with sparse activation of the hidden neurons.

This error function optimizes a Network with respect to some loss function similar to the standard ErrorFunction. Additionally another penalty term is added which enforces a sparse activation pattern of the hidden neurons. Given a target mean activation \( \rho \) the mean activation of hidden neuron j over the whole dataset \( \rho_j\) is interpreted as the activation propability and penalized using the KL-divergence: \( KL(\rho||\rho_j) = \rho log(\frac{\rho}{\rho_j})+(1-\rho) log(\frac{1-\rho}{1-\rho_j}) \)

This Error Function has two meta-parameters: rho governs the desired mean activation and beta the strength of regularization. Another regularizer can be added using setRegularizer as in typical ErrorFunctions.

Definition at line 57 of file SparseAutoencoderError.h.

Member Typedef Documentation

◆ DatasetType

Definition at line 60 of file SparseAutoencoderError.h.

Constructor & Destructor Documentation

◆ SparseAutoencoderError() [1/2]

template<class HiddenNeuron , class OutputNeuron >
shark::SparseAutoencoderError::SparseAutoencoderError ( DatasetType const &  dataset,
Autoencoder< HiddenNeuron, OutputNeuron > *  model,
AbstractLoss< RealVector, RealVector > *  loss,
double  rho = 0.5,
double  beta = 0.1 
)

◆ SparseAutoencoderError() [2/2]

template<class HiddenNeuron , class OutputNeuron >
shark::SparseAutoencoderError::SparseAutoencoderError ( DatasetType const &  dataset,
TiedAutoencoder< HiddenNeuron, OutputNeuron > *  model,
AbstractLoss< RealVector, RealVector > *  loss,
double  rho = 0.5,
double  beta = 0.1 
)

Member Function Documentation

◆ eval()

double shark::SparseAutoencoderError::eval ( RealVector const &  input) const
inline

◆ evalDerivative()

ResultType shark::SparseAutoencoderError::evalDerivative ( SearchPointType const &  input,
FirstOrderDerivative derivative 
) const
inlinevirtual

Evaluates the objective function and calculates its gradient.

Parameters
[in]inputThe argument to eval the function for.
[out]derivativeThe derivate is placed here.
Returns
The result of evaluating the function for the supplied argument.
Exceptions
FeatureNotAvailableExceptionin the default implementation and if a function does not support this feature.

Reimplemented from shark::AbstractObjectiveFunction< PointType, ResultT >.

Definition at line 105 of file SparseAutoencoderError.h.

References shark::AbstractObjectiveFunction< PointType, ResultT >::evalDerivative(), shark::AbstractObjectiveFunction< PointType, ResultT >::m_evaluationCounter, and remora::noalias().

◆ name()

std::string shark::SparseAutoencoderError::name ( ) const
inlinevirtual

From INameable: return the class name.

Reimplemented from shark::INameable.

Definition at line 82 of file SparseAutoencoderError.h.

◆ numberOfVariables()

std::size_t shark::SparseAutoencoderError::numberOfVariables ( ) const
inlinevirtual

Accesses the number of variables.

Implements shark::AbstractObjectiveFunction< PointType, ResultT >.

Definition at line 85 of file SparseAutoencoderError.h.

Referenced by main().

◆ operator=()

SparseAutoencoderError& shark::SparseAutoencoderError::operator= ( SparseAutoencoderError const &  op)
inline

Definition at line 76 of file SparseAutoencoderError.h.

◆ proposeStartingPoint()

SearchPointType shark::SparseAutoencoderError::proposeStartingPoint ( ) const
inlinevirtual

Proposes a starting point in the feasible search space of the function.

Returns
The generated starting point.
Exceptions
FeatureNotAvailableExceptionin the default implementation and if a function does not support this feature.

Reimplemented from shark::AbstractObjectiveFunction< PointType, ResultT >.

Definition at line 89 of file SparseAutoencoderError.h.

◆ setRegularizer()

void shark::SparseAutoencoderError::setRegularizer ( double  factor,
SingleObjectiveFunction regularizer 
)
inline

Definition at line 93 of file SparseAutoencoderError.h.

Referenced by main().

Friends And Related Function Documentation

◆ swap

void swap ( SparseAutoencoderError op1,
SparseAutoencoderError op2 
)
friend

Definition at line 116 of file SparseAutoencoderError.h.


The documentation for this class was generated from the following file: