Objective function for supervised learning. More...
#include <shark/ObjectiveFunctions/ErrorFunction.h>
Public Member Functions | |
template<class InputType , class LabelType , class OutputType > | |
ErrorFunction (LabeledData< InputType, LabelType > const &dataset, AbstractModel< InputType, OutputType > *model, AbstractLoss< LabelType, OutputType > *loss, bool useMiniBatches=false) | |
template<class InputType , class LabelType , class OutputType > | |
ErrorFunction (WeightedLabeledData< InputType, LabelType > const &dataset, AbstractModel< InputType, OutputType > *model, AbstractLoss< LabelType, OutputType > *loss) | |
ErrorFunction (const ErrorFunction &op) | |
ErrorFunction & | operator= (const ErrorFunction &op) |
std::string | name () const |
returns the name of the object More... | |
void | setRegularizer (double factor, SingleObjectiveFunction *regularizer) |
SearchPointType | proposeStartingPoint () const |
Proposes a starting point in the feasible search space of the function. More... | |
std::size_t | numberOfVariables () const |
Accesses the number of variables. More... | |
void | init () |
double | eval (RealVector const &input) const |
ResultType | evalDerivative (const SearchPointType &input, FirstOrderDerivative &derivative) const |
Evaluates the objective function and calculates its gradient. More... | |
Public Member Functions inherited from shark::AbstractObjectiveFunction< PointType, ResultT > | |
const Features & | features () const |
virtual void | updateFeatures () |
bool | hasValue () const |
returns whether this function can calculate it's function value More... | |
bool | hasFirstDerivative () const |
returns whether this function can calculate the first derivative More... | |
bool | hasSecondDerivative () const |
returns whether this function can calculate the second derivative More... | |
bool | canProposeStartingPoint () const |
returns whether this function can propose a starting point. More... | |
bool | isConstrained () const |
returns whether this function can return More... | |
bool | hasConstraintHandler () const |
returns whether this function can return More... | |
bool | canProvideClosestFeasible () const |
Returns whether this function can calculate thee closest feasible to an infeasible point. More... | |
bool | isThreadSafe () const |
Returns true, when the function can be usd in parallel threads. More... | |
bool | isNoisy () const |
Returns true, when the function can be usd in parallel threads. More... | |
AbstractObjectiveFunction () | |
Default ctor. More... | |
virtual | ~AbstractObjectiveFunction () |
Virtual destructor. More... | |
void | setRng (random::rng_type *rng) |
Sets the Rng used by the objective function. More... | |
virtual bool | hasScalableDimensionality () const |
virtual void | setNumberOfVariables (std::size_t numberOfVariables) |
Adjusts the number of variables if the function is scalable. More... | |
virtual std::size_t | numberOfObjectives () const |
virtual bool | hasScalableObjectives () const |
virtual void | setNumberOfObjectives (std::size_t numberOfObjectives) |
Adjusts the number of objectives if the function is scalable. More... | |
std::size_t | evaluationCounter () const |
Accesses the evaluation counter of the function. More... | |
AbstractConstraintHandler< SearchPointType > const & | getConstraintHandler () const |
Returns the constraint handler of the function if it has one. More... | |
virtual bool | isFeasible (const SearchPointType &input) const |
Tests whether a point in SearchSpace is feasible, e.g., whether the constraints are fulfilled. More... | |
virtual void | closestFeasible (SearchPointType &input) const |
If supported, the supplied point is repaired such that it satisfies all of the function's constraints. More... | |
virtual ResultType | eval (SearchPointType const &input) const |
Evaluates the objective function for the supplied argument. More... | |
ResultType | operator() (SearchPointType const &input) const |
Evaluates the function. Useful together with STL-Algorithms like std::transform. More... | |
virtual ResultType | evalDerivative (SearchPointType const &input, SecondOrderDerivative &derivative) const |
Evaluates the objective function and calculates its gradient. More... | |
Public Member Functions inherited from shark::INameable | |
virtual | ~INameable () |
Friends | |
void | swap (ErrorFunction &op1, ErrorFunction &op2) |
Objective function for supervised learning.
Definition at line 67 of file ErrorFunction.h.
shark::ErrorFunction::ErrorFunction | ( | LabeledData< InputType, LabelType > const & | dataset, |
AbstractModel< InputType, OutputType > * | model, | ||
AbstractLoss< LabelType, OutputType > * | loss, | ||
bool | useMiniBatches = false |
||
) |
shark::ErrorFunction::ErrorFunction | ( | WeightedLabeledData< InputType, LabelType > const & | dataset, |
AbstractModel< InputType, OutputType > * | model, | ||
AbstractLoss< LabelType, OutputType > * | loss | ||
) |
shark::ErrorFunction::ErrorFunction | ( | const ErrorFunction & | op | ) |
double shark::ErrorFunction::eval | ( | RealVector const & | input | ) | const |
Referenced by init().
|
virtual |
Evaluates the objective function and calculates its gradient.
[in] | input | The argument to eval the function for. |
[out] | derivative | The derivate is placed here. |
FeatureNotAvailableException | in the default implementation and if a function does not support this feature. |
Reimplemented from shark::AbstractObjectiveFunction< PointType, ResultT >.
Referenced by init().
|
inlinevirtual |
Reimplemented from shark::AbstractObjectiveFunction< PointType, ResultT >.
Definition at line 101 of file ErrorFunction.h.
References eval(), evalDerivative(), shark::AbstractObjectiveFunction< PointType, ResultT >::mep_rng, and swap.
Referenced by main(), shark::OptimizationTrainer< Model, LabelTypeT >::train(), trainAutoencoderModel(), and trainProblem().
|
inlinevirtual |
returns the name of the object
Reimplemented from shark::INameable.
Definition at line 86 of file ErrorFunction.h.
|
inlinevirtual |
Accesses the number of variables.
Implements shark::AbstractObjectiveFunction< PointType, ResultT >.
Definition at line 97 of file ErrorFunction.h.
Referenced by main(), and trainAutoencoderModel().
ErrorFunction& shark::ErrorFunction::operator= | ( | const ErrorFunction & | op | ) |
|
inlinevirtual |
Proposes a starting point in the feasible search space of the function.
FeatureNotAvailableException | in the default implementation and if a function does not support this feature. |
Reimplemented from shark::AbstractObjectiveFunction< PointType, ResultT >.
Definition at line 94 of file ErrorFunction.h.
|
inline |
Definition at line 89 of file ErrorFunction.h.
Referenced by main(), trainAutoencoderModel(), and trainProblem().
|
friend |
Referenced by init().