ROC-Curve - false negatives over false positives. More...
#include <shark/Statistics/ROC.h>
Public Member Functions | |
template<class InputType > | |
ROC (AbstractModel< InputType, RealVector > &model, LabeledData< InputType, unsigned int > const &set) | |
SHARK_EXPORT_SYMBOL double | threshold (double falseAcceptanceRate) const |
SHARK_EXPORT_SYMBOL double | value (double falseAcceptanceRate) const |
SHARK_EXPORT_SYMBOL double | equalErrorRate () const |
Computes the equal error rate of the classifier. More... | |
Protected Attributes | |
std::vector< double > | m_scorePositive |
scores of the positive examples More... | |
std::vector< double > | m_scoreNegative |
scores of the negative examples More... | |
ROC-Curve - false negatives over false positives.
|
inline |
Constructor
model | model to use for prediction |
set | data set with inputs and corresponding binary outputs (0 or 1) |
Definition at line 72 of file ROC.h.
References shark::classSizes(), equalErrorRate(), m_scoreNegative, m_scorePositive, SHARK_EXPORT_SYMBOL, SIZE_CHECK, threshold(), and value().
SHARK_EXPORT_SYMBOL double shark::ROC::equalErrorRate | ( | ) | const |
Computes the equal error rate of the classifier.
Referenced by ROC().
SHARK_EXPORT_SYMBOL double shark::ROC::threshold | ( | double | falseAcceptanceRate | ) | const |
Compute the threshold for given false acceptance rate, that is, for a given false positive rate. This threshold, used for classification with the underlying model, results in the given false acceptance rate.
Referenced by ROC().
SHARK_EXPORT_SYMBOL double shark::ROC::value | ( | double | falseAcceptanceRate | ) | const |
|
protected |
|
protected |