shark::NearestNeighborRegression< InputType > Class Template Reference

Nearest neighbor regression model. More...

#include <shark/Models/NearestNeighborRegression.h>

+ Inheritance diagram for shark::NearestNeighborRegression< InputType >:

Public Types

enum  DistanceWeights { UNIFORM, ONE_OVER_DISTANCE }
 Type of distance-based weights. More...
 
typedef AbstractNearestNeighbors< InputType, RealVector > NearestNeighbors
 
typedef base_type::BatchInputType BatchInputType
 
typedef base_type::BatchOutputType BatchOutputType
 
- Public Types inherited from shark::AbstractModel< InputType, RealVector >
enum  Feature
 
typedef InputType InputType
 Defines the input type of the model. More...
 
typedef RealVector OutputType
 Defines the output type of the model. More...
 
typedef Batch< InputType >::type BatchInputType
 defines the batch type of the input type. More...
 
typedef Batch< OutputType >::type BatchOutputType
 defines the batch type of the output type More...
 
typedef TypedFlags< FeatureFeatures
 
typedef TypedFeatureNotAvailableException< FeatureFeatureNotAvailableException
 

Public Member Functions

 NearestNeighborRegression (NearestNeighbors const *algorithm, unsigned int neighbors=3)
 Constructor. More...
 
std::string name () const
 From INameable: return the class name. More...
 
unsigned int neighbors () const
 return the number of neighbors More...
 
void setNeighbors (unsigned int neighbors)
 set the number of neighbors More...
 
DistanceWeights getDistanceWeightType () const
 query the way distances enter as weights More...
 
void setDistanceWeightType (DistanceWeights dw)
 set the way distances enter as weights More...
 
virtual RealVector parameterVector () const
 get internal parameters of the model More...
 
virtual void setParameterVector (RealVector const &newParameters)
 set internal parameters of the model More...
 
virtual std::size_t numberOfParameters () const
 return the size of the parameter vector More...
 
boost::shared_ptr< StatecreateState () const
 Creates an internal state of the model. More...
 
void eval (BatchInputType const &patterns, BatchOutputType &output, State &state) const
 soft k-nearest-neighbor prediction More...
 
void read (InArchive &archive)
 from ISerializable, reads a model from an archive More...
 
void write (OutArchive &archive) const
 from ISerializable, writes a model to an archive More...
 
- Public Member Functions inherited from shark::AbstractModel< InputType, RealVector >
 AbstractModel ()
 
virtual ~AbstractModel ()
 
const Featuresfeatures () const
 
virtual void updateFeatures ()
 
bool hasFirstParameterDerivative () const
 Returns true when the first parameter derivative is implemented. More...
 
bool hasSecondParameterDerivative () const
 Returns true when the second parameter derivative is implemented. More...
 
bool hasFirstInputDerivative () const
 Returns true when the first input derivative is implemented. More...
 
bool hasSecondInputDerivative () const
 Returns true when the second parameter derivative is implemented. More...
 
bool isSequential () const
 
virtual void eval (BatchInputType const &patterns, BatchOutputType &outputs) const
 Standard interface for evaluating the response of the model to a batch of patterns. More...
 
virtual void eval (InputType const &pattern, OutputType &output) const
 Standard interface for evaluating the response of the model to a single pattern. More...
 
Data< OutputTypeoperator() (Data< InputType > const &patterns) const
 Model evaluation as an operator for a whole dataset. This is a convenience function. More...
 
OutputType operator() (InputType const &pattern) const
 Model evaluation as an operator for a single pattern. This is a convenience function. More...
 
BatchOutputType operator() (BatchInputType const &patterns) const
 Model evaluation as an operator for a single pattern. This is a convenience function. More...
 
virtual void weightedParameterDerivative (BatchInputType const &pattern, BatchOutputType const &coefficients, State const &state, RealVector &derivative) const
 calculates the weighted sum of derivatives w.r.t the parameters. More...
 
virtual void weightedParameterDerivative (BatchInputType const &pattern, BatchOutputType const &coefficients, Batch< RealMatrix >::type const &errorHessian, State const &state, RealVector &derivative, RealMatrix &hessian) const
 calculates the weighted sum of derivatives w.r.t the parameters More...
 
virtual void weightedInputDerivative (BatchInputType const &pattern, BatchOutputType const &coefficients, State const &state, BatchInputType &derivative) const
 calculates the weighted sum of derivatives w.r.t the inputs More...
 
virtual void weightedInputDerivative (BatchInputType const &pattern, BatchOutputType const &coefficients, typename Batch< RealMatrix >::type const &errorHessian, State const &state, RealMatrix &derivative, Batch< RealMatrix >::type &hessian) const
 calculates the weighted sum of derivatives w.r.t the inputs More...
 
virtual void weightedDerivatives (BatchInputType const &patterns, BatchOutputType const &coefficients, State const &state, RealVector &parameterDerivative, BatchInputType &inputDerivative) const
 calculates weighted input and parameter derivative at the same time More...
 
- Public Member Functions inherited from shark::IParameterizable
virtual ~IParameterizable ()
 
- Public Member Functions inherited from shark::INameable
virtual ~INameable ()
 
- Public Member Functions inherited from shark::ISerializable
virtual ~ISerializable ()
 Virtual d'tor. More...
 
void load (InArchive &archive, unsigned int version)
 Versioned loading of components, calls read(...). More...
 
void save (OutArchive &archive, unsigned int version) const
 Versioned storing of components, calls write(...). More...
 
 BOOST_SERIALIZATION_SPLIT_MEMBER ()
 

Protected Attributes

NearestNeighbors const * m_algorithm
 
unsigned int m_classes
 number of classes More...
 
unsigned int m_neighbors
 number of neighbors to be taken into account More...
 
DistanceWeights m_distanceWeights
 type of distance-based weights computation More...
 
- Protected Attributes inherited from shark::AbstractModel< InputType, RealVector >
Features m_features
 

Detailed Description

template<class InputType>
class shark::NearestNeighborRegression< InputType >

Nearest neighbor regression model.

The NearestNeighborClassifier predicts a class label according to a local majority decision among its k nearest neighbors. It is not specified how ties are broken.

Template Parameters
InputTypeType of input data
tree_typeType of binary tree for nearest neighbor search. See KDTree and LCTree for Euclidean distance, and KHCTree for kernel distance.

Definition at line 54 of file NearestNeighborRegression.h.

Member Typedef Documentation

◆ BatchInputType

Definition at line 60 of file NearestNeighborRegression.h.

◆ BatchOutputType

Definition at line 61 of file NearestNeighborRegression.h.

◆ NearestNeighbors

Definition at line 58 of file NearestNeighborRegression.h.

Member Enumeration Documentation

◆ DistanceWeights

template<class InputType >
enum shark::NearestNeighborRegression::DistanceWeights

Type of distance-based weights.

Enumerator
UNIFORM 

uniform (= no) distance-based weights

ONE_OVER_DISTANCE 

weight each neighbor's label with 1/distance

Definition at line 64 of file NearestNeighborRegression.h.

Constructor & Destructor Documentation

◆ NearestNeighborRegression()

template<class InputType >
shark::NearestNeighborRegression< InputType >::NearestNeighborRegression ( NearestNeighbors const *  algorithm,
unsigned int  neighbors = 3 
)
inline

Constructor.

Parameters
algorithmthe used algorithm for nearst neighbor search
neighborsnumber of neighbors

Definition at line 74 of file NearestNeighborRegression.h.

Member Function Documentation

◆ createState()

template<class InputType >
boost::shared_ptr<State> shark::NearestNeighborRegression< InputType >::createState ( ) const
inlinevirtual

Creates an internal state of the model.

The state is needed when the derivatives are to be calculated. Eval can store a state which is then reused to speed up the calculations of the derivatives. This also allows eval to be evaluated in parallel!

Reimplemented from shark::AbstractModel< InputType, RealVector >.

Definition at line 124 of file NearestNeighborRegression.h.

References shark::AbstractModel< InputType, RealVector >::eval().

◆ eval()

◆ getDistanceWeightType()

template<class InputType >
DistanceWeights shark::NearestNeighborRegression< InputType >::getDistanceWeightType ( ) const
inline

query the way distances enter as weights

Definition at line 96 of file NearestNeighborRegression.h.

References shark::NearestNeighborRegression< InputType >::m_distanceWeights.

◆ name()

template<class InputType >
std::string shark::NearestNeighborRegression< InputType >::name ( ) const
inlinevirtual

From INameable: return the class name.

Reimplemented from shark::INameable.

Definition at line 81 of file NearestNeighborRegression.h.

◆ neighbors()

template<class InputType >
unsigned int shark::NearestNeighborRegression< InputType >::neighbors ( ) const
inline

◆ numberOfParameters()

template<class InputType >
virtual std::size_t shark::NearestNeighborRegression< InputType >::numberOfParameters ( ) const
inlinevirtual

return the size of the parameter vector

Reimplemented from shark::IParameterizable.

Definition at line 120 of file NearestNeighborRegression.h.

◆ parameterVector()

template<class InputType >
virtual RealVector shark::NearestNeighborRegression< InputType >::parameterVector ( ) const
inlinevirtual

get internal parameters of the model

Reimplemented from shark::IParameterizable.

Definition at line 104 of file NearestNeighborRegression.h.

References shark::NearestNeighborRegression< InputType >::m_neighbors.

◆ read()

template<class InputType >
void shark::NearestNeighborRegression< InputType >::read ( InArchive archive)
inlinevirtual

◆ setDistanceWeightType()

template<class InputType >
void shark::NearestNeighborRegression< InputType >::setDistanceWeightType ( DistanceWeights  dw)
inline

set the way distances enter as weights

Definition at line 100 of file NearestNeighborRegression.h.

References shark::NearestNeighborRegression< InputType >::m_distanceWeights.

◆ setNeighbors()

template<class InputType >
void shark::NearestNeighborRegression< InputType >::setNeighbors ( unsigned int  neighbors)
inline

◆ setParameterVector()

template<class InputType >
virtual void shark::NearestNeighborRegression< InputType >::setParameterVector ( RealVector const &  newParameters)
inlinevirtual

set internal parameters of the model

Reimplemented from shark::IParameterizable.

Definition at line 111 of file NearestNeighborRegression.h.

References shark::NearestNeighborRegression< InputType >::m_neighbors, and SHARK_RUNTIME_CHECK.

◆ write()

template<class InputType >
void shark::NearestNeighborRegression< InputType >::write ( OutArchive archive) const
inlinevirtual

Member Data Documentation

◆ m_algorithm

template<class InputType >
NearestNeighbors const* shark::NearestNeighborRegression< InputType >::m_algorithm
protected

◆ m_classes

template<class InputType >
unsigned int shark::NearestNeighborRegression< InputType >::m_classes
protected

◆ m_distanceWeights

◆ m_neighbors


The documentation for this class was generated from the following file: