Class for balancing two poles on a cart using a fitness function that punishes oscillating, i.e. quickly moving the cart back and forth to balance the poles. Based on code written by Verena Heidrich-Meisner for the paper. More...
#include <shark/ObjectiveFunctions/Benchmarks/GruauPole.h>
Public Member Functions | |
GruauPole (std::size_t hidden, bool bias, RecurrentStructure::SigmoidType sigmoidType=RecurrentStructure::FastSigmoid, bool normalize=true, std::size_t max_pole_evaluations=1000) | |
~GruauPole () | |
std::string | name () |
std::size_t | numberOfVariables () const |
Returns degrees of freedom. More... | |
SearchPointType | proposeStartingPoint () const |
Always proposes to start in a zero vector with appropriate degrees of freedom. More... | |
ResultType | eval (const SearchPointType &input) const |
Evaluates weight vector on special fitness function from Gruau paper. More... | |
ResultType | gruauFit (const SearchPointType &input) const |
Evaluates weight vector on special fitness function from Gruau paper. More... | |
ResultType | balanceFit (const SearchPointType &input, std::size_t maxEvals=100000) |
Evaluates weight vector on normal balancing function. More... | |
ResultType | generalFit (const SearchPointType &input, std::size_t maxEvals=1000) |
Evaluates weight vector on normal balancing function using 256 different starting positions. More... | |
Public Member Functions inherited from shark::AbstractObjectiveFunction< RealVector, double > | |
const Features & | features () const |
virtual void | updateFeatures () |
bool | hasValue () const |
returns whether this function can calculate it's function value More... | |
bool | hasFirstDerivative () const |
returns whether this function can calculate the first derivative More... | |
bool | hasSecondDerivative () const |
returns whether this function can calculate the second derivative More... | |
bool | canProposeStartingPoint () const |
returns whether this function can propose a starting point. More... | |
bool | isConstrained () const |
returns whether this function can return More... | |
bool | hasConstraintHandler () const |
returns whether this function can return More... | |
bool | canProvideClosestFeasible () const |
Returns whether this function can calculate thee closest feasible to an infeasible point. More... | |
bool | isThreadSafe () const |
Returns true, when the function can be usd in parallel threads. More... | |
bool | isNoisy () const |
Returns true, when the function can be usd in parallel threads. More... | |
AbstractObjectiveFunction () | |
Default ctor. More... | |
virtual | ~AbstractObjectiveFunction () |
Virtual destructor. More... | |
virtual void | init () |
void | setRng (random::rng_type *rng) |
Sets the Rng used by the objective function. More... | |
virtual bool | hasScalableDimensionality () const |
virtual void | setNumberOfVariables (std::size_t numberOfVariables) |
Adjusts the number of variables if the function is scalable. More... | |
virtual std::size_t | numberOfObjectives () const |
virtual bool | hasScalableObjectives () const |
virtual void | setNumberOfObjectives (std::size_t numberOfObjectives) |
Adjusts the number of objectives if the function is scalable. More... | |
std::size_t | evaluationCounter () const |
Accesses the evaluation counter of the function. More... | |
AbstractConstraintHandler< SearchPointType > const & | getConstraintHandler () const |
Returns the constraint handler of the function if it has one. More... | |
virtual bool | isFeasible (const SearchPointType &input) const |
Tests whether a point in SearchSpace is feasible, e.g., whether the constraints are fulfilled. More... | |
virtual void | closestFeasible (SearchPointType &input) const |
If supported, the supplied point is repaired such that it satisfies all of the function's constraints. More... | |
ResultType | operator() (SearchPointType const &input) const |
Evaluates the function. Useful together with STL-Algorithms like std::transform. More... | |
virtual ResultType | evalDerivative (SearchPointType const &input, FirstOrderDerivative &derivative) const |
Evaluates the objective function and calculates its gradient. More... | |
virtual ResultType | evalDerivative (SearchPointType const &input, SecondOrderDerivative &derivative) const |
Evaluates the objective function and calculates its gradient. More... | |
Public Member Functions inherited from shark::INameable | |
virtual | ~INameable () |
virtual std::string | name () const |
returns the name of the object More... | |
Additional Inherited Members | |
Public Types inherited from shark::AbstractObjectiveFunction< RealVector, double > | |
enum | Feature |
List of features that are supported by an implementation. More... | |
typedef RealVector | SearchPointType |
typedef double | ResultType |
typedef boost::mpl::if_< std::is_arithmetic< double >, SearchPointType, RealMatrix >::type | FirstOrderDerivative |
typedef TypedFlags< Feature > | Features |
This statement declares the member m_features. See Core/Flags.h for details. More... | |
typedef TypedFeatureNotAvailableException< Feature > | FeatureNotAvailableException |
Protected Member Functions inherited from shark::AbstractObjectiveFunction< RealVector, double > | |
void | announceConstraintHandler (AbstractConstraintHandler< SearchPointType > const *handler) |
helper function which is called to announce the presence of an constraint handler. More... | |
Protected Attributes inherited from shark::AbstractObjectiveFunction< RealVector, double > | |
Features | m_features |
std::size_t | m_evaluationCounter |
Evaluation counter, default value: 0. More... | |
AbstractConstraintHandler< SearchPointType > const * | m_constraintHandler |
random::rng_type * | mep_rng |
Class for balancing two poles on a cart using a fitness function that punishes oscillating, i.e. quickly moving the cart back and forth to balance the poles. Based on code written by Verena Heidrich-Meisner for the paper.
V. Heidrich-Meisner and C. Igel. Neuroevolution strategies for episodic reinforcement learn-ing. Journal of Algorithms, 64(4):152–168, 2009.
Special fitness function from the paper
F. Gruau, D. Whitley, L. Pyeatt, A comparison between cellular encoding and direct encoding for genetic neural networks, in: J.R. Koza, D.E. Goldberg, D.B. Fogel, R.L. Riol (Eds.), Genetic Programming 1996: Proceedings of the First Annual Conference, MIT Press, 1996, pp. 81–89.
Definition at line 73 of file GruauPole.h.
|
inline |
hidden | Number of hidden neurons in underlying neural network |
bias | Whether to use bias in neural network |
sigmoidType | Activation sigmoid function for neural network |
normalize | Whether to normalize input before use in neural network |
max_pole_evaluations | Balance goal of the function, i.e. number of steps that pole should be able to balance without failure |
Definition at line 81 of file GruauPole.h.
References shark::AbstractObjectiveFunction< RealVector, double >::CAN_PROPOSE_STARTING_POINT, shark::RecurrentStructure::Linear, shark::AbstractObjectiveFunction< RealVector, double >::m_evaluationCounter, shark::AbstractObjectiveFunction< RealVector, double >::m_features, and shark::OnlineRNNet::numberOfParameters().
|
inline |
Definition at line 127 of file GruauPole.h.
|
inline |
Evaluates weight vector on normal balancing function.
input | Vector to be evaluated. |
maxEvals | Balance goal of the function, i.e. number of steps that pole should be able to balance without failure |
Definition at line 212 of file GruauPole.h.
References shark::OnlineRNNet::eval(), shark::DoublePole::failure(), shark::DoublePole::getState(), shark::DoublePole::init(), shark::DoublePole::move(), remora::row(), shark::OnlineRNNet::setParameterVector(), and SIZE_CHECK.
|
inlinevirtual |
Evaluates weight vector on special fitness function from Gruau paper.
input | Vector to be evaluated. |
Reimplemented from shark::AbstractObjectiveFunction< RealVector, double >.
Definition at line 154 of file GruauPole.h.
References gruauFit(), shark::AbstractObjectiveFunction< RealVector, double >::m_evaluationCounter, and SIZE_CHECK.
Referenced by generalFit().
|
inline |
Evaluates weight vector on normal balancing function using 256 different starting positions.
input | Vector to be evaluated. |
maxEvals | Balance goal of the function, i.e. number of steps that pole should be able to balance without failure |
Definition at line 244 of file GruauPole.h.
References shark::OnlineRNNet::eval(), eval(), shark::DoublePole::failure(), shark::RecurrentStructure::FastSigmoid, shark::DoublePole::getState(), shark::DoublePole::init(), shark::RecurrentStructure::Logistic, shark::DoublePole::move(), remora::row(), shark::OnlineRNNet::setParameterVector(), SIZE_CHECK, and shark::RecurrentStructure::Tanh.
|
inline |
Evaluates weight vector on special fitness function from Gruau paper.
input | Vector to be evaluated. |
Definition at line 163 of file GruauPole.h.
References shark::OnlineRNNet::eval(), shark::DoublePole::failure(), shark::DoublePole::getJiggle(), shark::DoublePole::getState(), shark::DoublePole::init(), shark::DoublePole::move(), remora::row(), shark::OnlineRNNet::setParameterVector(), and SIZE_CHECK.
Referenced by eval().
|
inline |
Definition at line 133 of file GruauPole.h.
|
inlinevirtual |
Returns degrees of freedom.
Implements shark::AbstractObjectiveFunction< RealVector, double >.
Definition at line 138 of file GruauPole.h.
|
inlinevirtual |
Always proposes to start in a zero vector with appropriate degrees of freedom.
Reimplemented from shark::AbstractObjectiveFunction< RealVector, double >.
Definition at line 143 of file GruauPole.h.