Superclass of weighted unsupervised learning algorithms. More...
#include <shark/Algorithms/Trainers/AbstractWeightedTrainer.h>
Public Types | |
typedef base_type::ModelType | ModelType |
typedef base_type::InputType | InputType |
typedef base_type::DatasetType | DatasetType |
typedef WeightedUnlabeledData< InputType > | WeightedDatasetType |
Public Types inherited from shark::AbstractUnsupervisedTrainer< Model > | |
typedef Model | ModelType |
typedef Model::InputType | InputType |
Public Member Functions | |
virtual void | train (ModelType &model, WeightedDatasetType const &dataset)=0 |
Excecutes the algorithm and trains a model on the given weighted data. More... | |
virtual void | train (ModelType &model, DatasetType const &dataset) |
Excecutes the algorithm and trains a model on the given undata. More... | |
Public Member Functions inherited from shark::AbstractUnsupervisedTrainer< Model > | |
virtual void | train (ModelType &model, const UnlabeledData< InputType > &inputset)=0 |
Core of the Trainer interface. More... | |
Public Member Functions inherited from shark::INameable | |
virtual | ~INameable () |
virtual std::string | name () const |
returns the name of the object More... | |
Public Member Functions inherited from shark::ISerializable | |
virtual | ~ISerializable () |
Virtual d'tor. More... | |
virtual void | read (InArchive &archive) |
Read the component from the supplied archive. More... | |
virtual void | write (OutArchive &archive) const |
Write the component to the supplied archive. More... | |
void | load (InArchive &archive, unsigned int version) |
Versioned loading of components, calls read(...). More... | |
void | save (OutArchive &archive, unsigned int version) const |
Versioned storing of components, calls write(...). More... | |
BOOST_SERIALIZATION_SPLIT_MEMBER () | |
Superclass of weighted unsupervised learning algorithms.
Definition at line 93 of file AbstractWeightedTrainer.h.
typedef base_type::DatasetType shark::AbstractWeightedUnsupervisedTrainer< Model >::DatasetType |
Definition at line 100 of file AbstractWeightedTrainer.h.
typedef base_type::InputType shark::AbstractWeightedUnsupervisedTrainer< Model >::InputType |
Definition at line 99 of file AbstractWeightedTrainer.h.
typedef base_type::ModelType shark::AbstractWeightedUnsupervisedTrainer< Model >::ModelType |
Definition at line 98 of file AbstractWeightedTrainer.h.
typedef WeightedUnlabeledData<InputType> shark::AbstractWeightedUnsupervisedTrainer< Model >::WeightedDatasetType |
Definition at line 101 of file AbstractWeightedTrainer.h.
|
pure virtual |
Excecutes the algorithm and trains a model on the given weighted data.
|
inlinevirtual |
Excecutes the algorithm and trains a model on the given undata.
This method behaves as using train with a weighted dataset where all weights are equal. The default implementation just creates such a dataset and executes the weighted version of the algorithm.
Definition at line 111 of file AbstractWeightedTrainer.h.
References shark::AbstractWeightedTrainer< Model, LabelTypeT >::train().