#include <shark/Data/Csv.h>
#include <shark/Models/LinearModel.h>
#include <shark/Models/ConcatenatedModel.h>
#include <shark/Algorithms/GradientDescent/Rprop.h>
#include <shark/ObjectiveFunctions/Loss/CrossEntropy.h>
#include <shark/ObjectiveFunctions/Loss/ZeroOneLoss.h>
#include <shark/Algorithms/Trainers/OptimizationTrainer.h>
#include <shark/Algorithms/StoppingCriteria/MaxIterations.h>
#include <shark/Algorithms/StoppingCriteria/TrainingError.h>
#include <shark/Algorithms/StoppingCriteria/GeneralizationQuotient.h>
#include <shark/Algorithms/StoppingCriteria/ValidatedStoppingCriterion.h>
#include <iostream>
Go to the source code of this file.
Functions | |
template<class T > | |
double | experiment (AbstractModel< RealVector, RealVector > &network, AbstractStoppingCriterion< T > &stoppingCriterion, ClassificationDataset const &trainingset, ClassificationDataset const &testset) |
int | main () |
double experiment | ( | AbstractModel< RealVector, RealVector > & | network, |
AbstractStoppingCriterion< T > & | stoppingCriterion, | ||
ClassificationDataset const & | trainingset, | ||
ClassificationDataset const & | testset | ||
) |
Definition at line 20 of file StoppingCriteria.cpp.
References shark::initRandomUniform(), shark::LabeledData< InputT, LabelT >::inputs(), shark::LabeledData< InputT, LabelT >::labels(), and shark::OptimizationTrainer< Model, LabelTypeT >::train().
Referenced by main().
int main | ( | ) |
Definition at line 45 of file StoppingCriteria.cpp.
References experiment(), shark::importCSV(), shark::inputDimension(), shark::LAST_COLUMN, shark::numberOfClasses(), shark::LabeledData< InputT, LabelT >::numberOfElements(), shark::MaxIterations< ResultSet >::setMaxIterations(), shark::LabeledData< InputT, LabelT >::shuffle(), and shark::splitAtElement().