OneVersusOne.cpp
Go to the documentation of this file.
1 //===========================================================================
2 /*!
3  *
4  *
5  * \brief Example program for the one-versus-one classifier based on SVMs
6  *
7  *
8  *
9  * \author T. Glasmachers
10  * \date 2012
11  *
12  *
13  * \par Copyright 1995-2017 Shark Development Team
14  *
15  * <BR><HR>
16  * This file is part of Shark.
17  * <http://shark-ml.org/>
18  *
19  * Shark is free software: you can redistribute it and/or modify
20  * it under the terms of the GNU Lesser General Public License as published
21  * by the Free Software Foundation, either version 3 of the License, or
22  * (at your option) any later version.
23  *
24  * Shark is distributed in the hope that it will be useful,
25  * but WITHOUT ANY WARRANTY; without even the implied warranty of
26  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27  * GNU Lesser General Public License for more details.
28  *
29  * You should have received a copy of the GNU Lesser General Public License
30  * along with Shark. If not, see <http://www.gnu.org/licenses/>.
31  *
32  */
33 //===========================================================================
34 
35 
36 #include <shark/Core/Random.h>
42 #include <iostream>
43 
44 
45 using namespace shark;
46 using namespace std;
47 
48 
49 // data generating distribution for our toy
50 // multi-category classification problem
51 /// @cond EXAMPLE_SYMBOLS
52 class Problem : public LabeledDataDistribution<RealVector, unsigned int>
53 {
54 public:
55  void draw(RealVector& input, unsigned int& label)const
56  {
57  label = random::discrete(random::globalRng, 0, 4);
58  input.resize(1);
59  input(0) = random::gauss(random::globalRng) + 3.0 * label;
60  }
61 };
62 /// @endcond
63 
64 int main()
65 {
66  // experiment settings
67  unsigned int classes = 5;
68  std::size_t ell = 100;
69  std::size_t tests = 10000;
70  double C = 10.0;
71  double gamma = 0.5;
72 
73  // generate a very simple dataset with a little noise
74  Problem problem;
75  ClassificationDataset training = problem.generateDataset(ell);
76  ClassificationDataset test = problem.generateDataset(tests);
77  repartitionByClass(training);
78 
79  // kernel function
80  GaussianRbfKernel<> kernel(gamma);
81  // train the OVO machine
83  unsigned int pairs = classes * (classes - 1) / 2;
84  std::vector< KernelClassifier<RealVector> > bin_svm(pairs);
85  for (std::size_t n=0, c=1; c<classes; c++)
86  {
87  std::vector< OneVersusOneClassifier<RealVector>::binary_classifier_type* > vs_c;
88  for (std::size_t e=0; e<c; e++, n++)
89  {
90  //get the binary subproblem
91  ClassificationDataset bindata = binarySubProblem(training,e,c);
92 
93  // train the binary machine
94  CSvmTrainer<RealVector> trainer(&kernel, C,false);
95  trainer.train(bin_svm[n], bindata);
96  vs_c.push_back(&bin_svm[n]);
97  }
98  ovo.addClass(vs_c);
99  }
100 
101  // compute errors
103  Data<unsigned int> output = ovo(training.inputs());
104  double train_error = loss.eval(training.labels(), output);
105  output = ovo(test.inputs());
106  double test_error = loss.eval(test.labels(), output);
107  cout << "training error: " << 100.0 * train_error << "%" << endl;
108  cout << " test error: " << 100.0 * test_error << "%" << endl;
109 }