#include <shark/Data/Dataset.h>
#include <shark/Data/CVDatasetTools.h>
#include <shark/Data/DataDistribution.h>
#include <shark/Data/Statistics.h>
#include <shark/Models/Kernels/ArdKernel.h>
#include <shark/Algorithms/QP/QuadraticProgram.h>
#include <shark/Algorithms/Trainers/CSvmTrainer.h>
#include <shark/Algorithms/GradientDescent/Rprop.h>
#include <shark/ObjectiveFunctions/Loss/ZeroOneLoss.h>
#include <shark/ObjectiveFunctions/SvmLogisticInterpretation.h>
#include <shark/Algorithms/Trainers/NormalizeComponentsUnitVariance.h>
Go to the source code of this file.
Functions | |
RealVector | run_one_trial (bool verbose) |
int | main () |
Variables | |
unsigned int | useful_dim = 5 |
unsigned int | noise_dim = 5 |
unsigned int | total_dim = useful_dim + noise_dim |
int main | ( | ) |
Definition at line 180 of file CSvmMaxLikelihoodMS.cpp.
References shark::Data< Type >::element(), shark::meanvar(), run_one_trial(), and total_dim.
RealVector run_one_trial | ( | bool | verbose | ) |
Definition at line 23 of file CSvmMaxLikelihoodMS.cpp.
References shark::AbstractSvmTrainer< InputType, unsigned int, KernelClassifier< InputType >, AbstractWeightedTrainer< KernelClassifier< InputType > > >::C(), shark::createCVIID(), shark::ZeroOneLoss< LabelType, OutputType >::eval(), shark::SvmLogisticInterpretation< InputType >::eval(), shark::ARDKernelUnconstrained< InputType >::gammaVector(), shark::LabeledDataDistribution< InputType, LabelType >::generateDataset(), shark::AbstractObjectiveFunction< PointType, ResultT >::init(), shark::IRpropPlus::init(), shark::LabeledData< InputT, LabelT >::inputs(), shark::LabeledData< InputT, LabelT >::labels(), shark::RpropMinus::maxDelta(), noise_dim, shark::ARDKernelUnconstrained< InputType >::parameterVector(), shark::AbstractSvmTrainer< InputType, unsigned int, KernelClassifier< InputType >, AbstractWeightedTrainer< KernelClassifier< InputType > > >::parameterVector(), shark::ResultSet< SearchPointT, ResultT >::point, shark::AbstractSvmTrainer< InputType, unsigned int, KernelClassifier< InputType >, AbstractWeightedTrainer< KernelClassifier< InputType > > >::setParameterVector(), shark::AbstractSingleObjectiveOptimizer< PointType >::solution(), shark::IRpropPlus::step(), total_dim, shark::NormalizeComponentsUnitVariance< DataType >::train(), shark::CSvmTrainer< InputType, CacheType >::train(), shark::transformInputs(), useful_dim, and shark::ResultSet< SearchPointT, ResultT >::value.
Referenced by main().
unsigned int noise_dim = 5 |
Definition at line 20 of file CSvmMaxLikelihoodMS.cpp.
Referenced by run_one_trial().
unsigned int total_dim = useful_dim + noise_dim |
Definition at line 21 of file CSvmMaxLikelihoodMS.cpp.
Referenced by main(), and run_one_trial().
unsigned int useful_dim = 5 |
Definition at line 19 of file CSvmMaxLikelihoodMS.cpp.
Referenced by run_one_trial().