AbstractSvmTrainer(KernelType *kernel, double C, bool offset, bool unconstrained=false) | shark::AbstractSvmTrainer< InputType, RealVector, KernelExpansion< InputType > > | inline |
AbstractSvmTrainer(KernelType *kernel, double negativeC, double positiveC, bool offset, bool unconstrained=false) | shark::AbstractSvmTrainer< InputType, RealVector, KernelExpansion< InputType > > | inline |
accessCount() const | shark::QpConfig | inline |
BOOST_SERIALIZATION_SPLIT_MEMBER() | shark::ISerializable | |
C() const | shark::AbstractSvmTrainer< InputType, RealVector, KernelExpansion< InputType > > | inline |
cacheSize() const | shark::AbstractSvmTrainer< InputType, RealVector, KernelExpansion< InputType > > | inline |
DatasetType typedef | shark::AbstractTrainer< Model, LabelTypeT > | |
InputType typedef | shark::AbstractTrainer< Model, LabelTypeT > | |
isUnconstrained() const | shark::AbstractSvmTrainer< InputType, RealVector, KernelExpansion< InputType > > | inline |
kernel() | shark::AbstractSvmTrainer< InputType, RealVector, KernelExpansion< InputType > > | inline |
kernel() const | shark::AbstractSvmTrainer< InputType, RealVector, KernelExpansion< InputType > > | inline |
KernelType typedef | shark::RegularizationNetworkTrainer< InputType > | |
LabelType typedef | shark::AbstractTrainer< Model, LabelTypeT > | |
load(InArchive &archive, unsigned int version) | shark::ISerializable | inline |
m_accessCount | shark::QpConfig | protected |
m_cacheSize | shark::AbstractSvmTrainer< InputType, RealVector, KernelExpansion< InputType > > | protected |
m_kernel | shark::AbstractSvmTrainer< InputType, RealVector, KernelExpansion< InputType > > | protected |
m_precomputedKernelMatrix | shark::QpConfig | protected |
m_regularizers | shark::AbstractSvmTrainer< InputType, RealVector, KernelExpansion< InputType > > | protected |
m_s2do | shark::QpConfig | protected |
m_shrinking | shark::QpConfig | protected |
m_solutionproperties | shark::QpConfig | protected |
m_sparsify | shark::QpConfig | protected |
m_stoppingcondition | shark::QpConfig | protected |
m_trainOffset | shark::AbstractSvmTrainer< InputType, RealVector, KernelExpansion< InputType > > | protected |
m_unconstrained | shark::AbstractSvmTrainer< InputType, RealVector, KernelExpansion< InputType > > | protected |
m_verbosity | shark::QpConfig | protected |
ModelType typedef | shark::RegularizationNetworkTrainer< InputType > | |
name() const | shark::RegularizationNetworkTrainer< InputType > | inlinevirtual |
noiseVariance() const | shark::RegularizationNetworkTrainer< InputType > | inline |
numberOfParameters() const | shark::AbstractSvmTrainer< InputType, RealVector, KernelExpansion< InputType > > | inlinevirtual |
parameterVector() const | shark::AbstractSvmTrainer< InputType, RealVector, KernelExpansion< InputType > > | inlinevirtual |
ParameterVectorType typedef | shark::IParameterizable<> | |
precision() const | shark::RegularizationNetworkTrainer< InputType > | inline |
precomputeKernel() | shark::QpConfig | inline |
precomputeKernel() const | shark::QpConfig | inline |
QpConfig(bool precomputedFlag=false, bool sparsifyFlag=true) | shark::QpConfig | inline |
read(InArchive &archive) | shark::ISerializable | inlinevirtual |
RegularizationNetworkTrainer(KernelType *kernel, double betaInv, bool unconstrained=false) | shark::RegularizationNetworkTrainer< InputType > | inline |
regularizationParameters() const | shark::AbstractSvmTrainer< InputType, RealVector, KernelExpansion< InputType > > | inline |
s2do() | shark::QpConfig | inline |
s2do() const | shark::QpConfig | inline |
save(OutArchive &archive, unsigned int version) const | shark::ISerializable | inline |
setC(double C) | shark::AbstractSvmTrainer< InputType, RealVector, KernelExpansion< InputType > > | inline |
setCacheSize(std::size_t size) | shark::AbstractSvmTrainer< InputType, RealVector, KernelExpansion< InputType > > | inline |
setKernel(KernelType *kernel) | shark::AbstractSvmTrainer< InputType, RealVector, KernelExpansion< InputType > > | inline |
setMaxIterations(unsigned long long i) | shark::QpConfig | inline |
setMaxSeconds(double s) | shark::QpConfig | inline |
setMinAccuracy(double a) | shark::QpConfig | inline |
setNoiseVariance(double betaInv) | shark::RegularizationNetworkTrainer< InputType > | inline |
setParameterVector(RealVector const &newParameters) | shark::AbstractSvmTrainer< InputType, RealVector, KernelExpansion< InputType > > | inlinevirtual |
setPrecision(double beta) | shark::RegularizationNetworkTrainer< InputType > | inline |
setRegularizationParameters(RealVector const ®ularizers) | shark::AbstractSvmTrainer< InputType, RealVector, KernelExpansion< InputType > > | inline |
setTargetValue(double v) | shark::QpConfig | inline |
shrinking() | shark::QpConfig | inline |
shrinking() const | shark::QpConfig | inline |
solutionProperties() | shark::QpConfig | inline |
sparsify() | shark::QpConfig | inline |
sparsify() const | shark::QpConfig | inline |
stoppingCondition() | shark::QpConfig | inline |
stoppingCondition() const | shark::QpConfig | inline |
train(KernelExpansion< InputType > &svm, const LabeledData< InputType, RealVector > &dataset) | shark::RegularizationNetworkTrainer< InputType > | inline |
AbstractSvmTrainer< InputType, RealVector, KernelExpansion< InputType > >::train(ModelType &model, DatasetType const &dataset)=0 | shark::AbstractTrainer< Model, LabelTypeT > | pure virtual |
trainOffset() const | shark::AbstractSvmTrainer< InputType, RealVector, KernelExpansion< InputType > > | inline |
verbosity() | shark::QpConfig | inline |
verbosity() const | shark::QpConfig | inline |
write(OutArchive &archive) const | shark::ISerializable | inlinevirtual |
~INameable() | shark::INameable | inlinevirtual |
~IParameterizable() | shark::IParameterizable<> | inlinevirtual |
~ISerializable() | shark::ISerializable | inlinevirtual |