AbstractKernelFunction() | shark::AbstractKernelFunction< std::size_t > | inline |
AbstractMetric() | shark::AbstractMetric< std::size_t > | inline |
BatchInputType typedef | shark::AbstractKernelFunction< std::size_t > | |
BOOST_SERIALIZATION_SPLIT_MEMBER() | shark::ISerializable | |
computeMatrix() | shark::GaussianTaskKernel< InputTypeT > | inlineprotected |
ConstBatchInputReference typedef | shark::AbstractKernelFunction< std::size_t > | |
ConstInputReference typedef | shark::AbstractKernelFunction< std::size_t > | |
createState() const | shark::DiscreteKernel | inlinevirtual |
DiscreteKernel(RealMatrix const &matrix) | shark::DiscreteKernel | inline |
eval(ConstInputReference x1, ConstInputReference x2) const | shark::DiscreteKernel | inlinevirtual |
eval(ConstBatchInputReference batchX1, ConstBatchInputReference batchX2, RealMatrix &result, State &state) const | shark::DiscreteKernel | inlinevirtual |
eval(ConstBatchInputReference batchX1, ConstBatchInputReference batchX2, RealMatrix &result) const | shark::DiscreteKernel | inlinevirtual |
Feature enum name | shark::AbstractKernelFunction< std::size_t > | |
featureDistance(ConstInputReference x1, ConstInputReference x2) const | shark::AbstractMetric< std::size_t > | inline |
featureDistanceSqr(ConstInputReference x1, ConstInputReference x2) const | shark::AbstractKernelFunction< std::size_t > | inlinevirtual |
featureDistanceSqr(ConstBatchInputReference batchX1, ConstBatchInputReference batchX2) const | shark::AbstractKernelFunction< std::size_t > | inlinevirtual |
AbstractMetric< std::size_t >::featureDistanceSqr(ConstInputReference x1, ConstInputReference x2) const=0 | shark::AbstractMetric< std::size_t > | pure virtual |
FeatureNotAvailableException typedef | shark::AbstractKernelFunction< std::size_t > | |
features() const | shark::AbstractKernelFunction< std::size_t > | inline |
Features typedef | shark::AbstractKernelFunction< std::size_t > | |
gamma() const | shark::GaussianTaskKernel< InputTypeT > | inline |
GaussianTaskKernel(Data< MultiTaskSampleType > const &data, std::size_t tasks, KernelType &inputkernel, double gamma) | shark::GaussianTaskKernel< InputTypeT > | inline |
HAS_FIRST_INPUT_DERIVATIVE enum value | shark::AbstractKernelFunction< std::size_t > | |
HAS_FIRST_PARAMETER_DERIVATIVE enum value | shark::AbstractKernelFunction< std::size_t > | |
hasFirstInputDerivative() const | shark::AbstractKernelFunction< std::size_t > | inline |
hasFirstParameterDerivative() const | shark::AbstractKernelFunction< std::size_t > | inline |
InputType typedef | shark::GaussianTaskKernel< InputTypeT > | |
IS_NORMALIZED enum value | shark::AbstractKernelFunction< std::size_t > | |
isNormalized() const | shark::AbstractKernelFunction< std::size_t > | inline |
KernelType typedef | shark::GaussianTaskKernel< InputTypeT > | |
load(InArchive &archive, unsigned int version) | shark::ISerializable | inline |
m_data | shark::GaussianTaskKernel< InputTypeT > | protected |
m_features | shark::AbstractKernelFunction< std::size_t > | protected |
m_gamma | shark::GaussianTaskKernel< InputTypeT > | protected |
m_matrix | shark::DiscreteKernel | protected |
mpe_inputKernel | shark::GaussianTaskKernel< InputTypeT > | protected |
MultiTaskSampleType typedef | shark::GaussianTaskKernel< InputTypeT > | |
name() const | shark::GaussianTaskKernel< InputTypeT > | inlinevirtual |
numberOfParameters() const | shark::GaussianTaskKernel< InputTypeT > | inlinevirtual |
numberOfTasks() const | shark::GaussianTaskKernel< InputTypeT > | inline |
operator()(ConstInputReference x1, ConstInputReference x2) const | shark::AbstractKernelFunction< std::size_t > | inline |
operator()(ConstBatchInputReference batchX1, ConstBatchInputReference batchX2) const | shark::AbstractKernelFunction< std::size_t > | inline |
parameterVector() const | shark::GaussianTaskKernel< InputTypeT > | inlinevirtual |
ParameterVectorType typedef | shark::IParameterizable<> | |
read(InArchive &ar) | shark::GaussianTaskKernel< InputTypeT > | inlinevirtual |
save(OutArchive &archive, unsigned int version) const | shark::ISerializable | inline |
setGamma(double gamma) | shark::GaussianTaskKernel< InputTypeT > | inline |
setParameterVector(RealVector const &newParameters) | shark::GaussianTaskKernel< InputTypeT > | inlinevirtual |
setWidth(double sigma) | shark::GaussianTaskKernel< InputTypeT > | inline |
sigma() const | shark::GaussianTaskKernel< InputTypeT > | inline |
size() const | shark::DiscreteKernel | inline |
SUPPORTS_VARIABLE_INPUT_SIZE enum value | shark::AbstractKernelFunction< std::size_t > | |
supportsVariableInputSize() const | shark::AbstractKernelFunction< std::size_t > | inline |
updateFeatures() | shark::AbstractKernelFunction< std::size_t > | inlinevirtual |
weightedInputDerivative(ConstBatchInputReference batchX1, ConstBatchInputReference batchX2, RealMatrix const &coefficientsX2, State const &state, BatchInputType &gradient) const | shark::AbstractKernelFunction< std::size_t > | inlinevirtual |
weightedParameterDerivative(ConstBatchInputReference batchX1, ConstBatchInputReference batchX2, RealMatrix const &coefficients, State const &state, RealVector &gradient) const | shark::AbstractKernelFunction< std::size_t > | inlinevirtual |
write(OutArchive &ar) const | shark::GaussianTaskKernel< InputTypeT > | inlinevirtual |
~AbstractMetric() | shark::AbstractMetric< std::size_t > | inlinevirtual |
~INameable() | shark::INameable | inlinevirtual |
~IParameterizable() | shark::IParameterizable<> | inlinevirtual |
~ISerializable() | shark::ISerializable | inlinevirtual |