AbstractModel() | shark::AbstractModel< RealVector, RealVector > | inline |
Autoencoder() | shark::Autoencoder< HiddenNeuron, OutputNeuron > | inline |
BatchInputType typedef | shark::AbstractModel< RealVector, RealVector > | |
BatchOutputType typedef | shark::AbstractModel< RealVector, RealVector > | |
BOOST_SERIALIZATION_SPLIT_MEMBER() | shark::ISerializable | |
createState() const | shark::Autoencoder< HiddenNeuron, OutputNeuron > | inlinevirtual |
decode(Data< RealVector > const &patterns) const | shark::Autoencoder< HiddenNeuron, OutputNeuron > | inline |
decode(LabeledData< RealVector, Label > const &data) const | shark::Autoencoder< HiddenNeuron, OutputNeuron > | inline |
decoderMatrix() const | shark::Autoencoder< HiddenNeuron, OutputNeuron > | inline |
decoderMatrix() | shark::Autoencoder< HiddenNeuron, OutputNeuron > | inline |
encode(Data< RealVector > const &patterns) const | shark::Autoencoder< HiddenNeuron, OutputNeuron > | inline |
encode(LabeledData< RealVector, Label > const &data) const | shark::Autoencoder< HiddenNeuron, OutputNeuron > | inline |
encoderMatrix() const | shark::Autoencoder< HiddenNeuron, OutputNeuron > | inline |
encoderMatrix() | shark::Autoencoder< HiddenNeuron, OutputNeuron > | inline |
eval(RealMatrix const &patterns, RealMatrix &output, State &state) const | shark::Autoencoder< HiddenNeuron, OutputNeuron > | inline |
AbstractModel< RealVector, RealVector >::eval(BatchInputType const &patterns, BatchOutputType &outputs) const | shark::AbstractModel< RealVector, RealVector > | inlinevirtual |
AbstractModel< RealVector, RealVector >::eval(BatchInputType const &patterns, BatchOutputType &outputs, State &state) const=0 | shark::AbstractModel< RealVector, RealVector > | pure virtual |
AbstractModel< RealVector, RealVector >::eval(InputType const &pattern, OutputType &output) const | shark::AbstractModel< RealVector, RealVector > | inlinevirtual |
evalLayer(std::size_t layer, RealMatrix const &patterns, RealMatrix &outputs) const | shark::Autoencoder< HiddenNeuron, OutputNeuron > | inline |
evalLayer(std::size_t layer, Data< RealVector > const &patterns) const | shark::Autoencoder< HiddenNeuron, OutputNeuron > | inline |
Feature enum name | shark::AbstractModel< RealVector, RealVector > | |
FeatureNotAvailableException typedef | shark::AbstractModel< RealVector, RealVector > | |
Features typedef | shark::AbstractModel< RealVector, RealVector > | |
features() const | shark::AbstractModel< RealVector, RealVector > | inline |
HAS_FIRST_INPUT_DERIVATIVE enum value | shark::AbstractModel< RealVector, RealVector > | |
HAS_FIRST_PARAMETER_DERIVATIVE enum value | shark::AbstractModel< RealVector, RealVector > | |
HAS_SECOND_INPUT_DERIVATIVE enum value | shark::AbstractModel< RealVector, RealVector > | |
HAS_SECOND_PARAMETER_DERIVATIVE enum value | shark::AbstractModel< RealVector, RealVector > | |
hasFirstInputDerivative() const | shark::AbstractModel< RealVector, RealVector > | inline |
hasFirstParameterDerivative() const | shark::AbstractModel< RealVector, RealVector > | inline |
hasSecondInputDerivative() const | shark::AbstractModel< RealVector, RealVector > | inline |
hasSecondParameterDerivative() const | shark::AbstractModel< RealVector, RealVector > | inline |
hiddenActivationFunction() const | shark::Autoencoder< HiddenNeuron, OutputNeuron > | inline |
hiddenActivationFunction() | shark::Autoencoder< HiddenNeuron, OutputNeuron > | inline |
hiddenBias() const | shark::Autoencoder< HiddenNeuron, OutputNeuron > | inline |
hiddenBias() | shark::Autoencoder< HiddenNeuron, OutputNeuron > | inline |
hiddenResponses(State const &state) const | shark::Autoencoder< HiddenNeuron, OutputNeuron > | inline |
inputSize() const | shark::Autoencoder< HiddenNeuron, OutputNeuron > | inline |
InputType typedef | shark::AbstractModel< RealVector, RealVector > | |
IS_SEQUENTIAL enum value | shark::AbstractModel< RealVector, RealVector > | |
isSequential() const | shark::AbstractModel< RealVector, RealVector > | inline |
load(InArchive &archive, unsigned int version) | shark::ISerializable | inline |
m_features | shark::AbstractModel< RealVector, RealVector > | protected |
name() const | shark::Autoencoder< HiddenNeuron, OutputNeuron > | inlinevirtual |
numberOfHiddenNeurons() const | shark::Autoencoder< HiddenNeuron, OutputNeuron > | inline |
numberOfParameters() const | shark::Autoencoder< HiddenNeuron, OutputNeuron > | inlinevirtual |
operator()(Data< InputType > const &patterns) const | shark::AbstractModel< RealVector, RealVector > | inline |
operator()(InputType const &pattern) const | shark::AbstractModel< RealVector, RealVector > | inline |
operator()(BatchInputType const &patterns) const | shark::AbstractModel< RealVector, RealVector > | inline |
outputActivationFunction() const | shark::Autoencoder< HiddenNeuron, OutputNeuron > | inline |
outputActivationFunction() | shark::Autoencoder< HiddenNeuron, OutputNeuron > | inline |
outputBias() const | shark::Autoencoder< HiddenNeuron, OutputNeuron > | inline |
outputBias() | shark::Autoencoder< HiddenNeuron, OutputNeuron > | inline |
outputSize() const | shark::Autoencoder< HiddenNeuron, OutputNeuron > | inline |
OutputType typedef | shark::AbstractModel< RealVector, RealVector > | |
parameterVector() const | shark::Autoencoder< HiddenNeuron, OutputNeuron > | inlinevirtual |
read(InArchive &archive) | shark::Autoencoder< HiddenNeuron, OutputNeuron > | inlinevirtual |
save(OutArchive &archive, unsigned int version) const | shark::ISerializable | inline |
setParameterVector(RealVector const &newParameters) | shark::Autoencoder< HiddenNeuron, OutputNeuron > | inlinevirtual |
setStructure(std::size_t in, std::size_t hidden) | shark::Autoencoder< HiddenNeuron, OutputNeuron > | inline |
updateFeatures() | shark::AbstractModel< RealVector, RealVector > | inlinevirtual |
weightedDerivatives(BatchInputType const &patterns, BatchOutputType const &coefficients, State const &state, RealVector ¶meterDerivative, BatchInputType &inputDerivative) const | shark::Autoencoder< HiddenNeuron, OutputNeuron > | inlinevirtual |
weightedInputDerivative(BatchInputType const &patterns, RealMatrix const &coefficients, State const &state, BatchInputType &inputDerivative) const | shark::Autoencoder< HiddenNeuron, OutputNeuron > | inline |
AbstractModel< RealVector, RealVector >::weightedInputDerivative(BatchInputType const &pattern, BatchOutputType const &coefficients, State const &state, BatchInputType &derivative) const | shark::AbstractModel< RealVector, RealVector > | inlinevirtual |
AbstractModel< RealVector, RealVector >::weightedInputDerivative(BatchInputType const &pattern, BatchOutputType const &coefficients, typename Batch< RealMatrix >::type const &errorHessian, State const &state, RealMatrix &derivative, Batch< RealMatrix >::type &hessian) const | shark::AbstractModel< RealVector, RealVector > | inlinevirtual |
weightedParameterDerivative(BatchInputType const &patterns, RealMatrix const &coefficients, State const &state, RealVector &gradient) const | shark::Autoencoder< HiddenNeuron, OutputNeuron > | inline |
AbstractModel< RealVector, RealVector >::weightedParameterDerivative(BatchInputType const &pattern, BatchOutputType const &coefficients, State const &state, RealVector &derivative) const | shark::AbstractModel< RealVector, RealVector > | inlinevirtual |
AbstractModel< RealVector, RealVector >::weightedParameterDerivative(BatchInputType const &pattern, BatchOutputType const &coefficients, Batch< RealMatrix >::type const &errorHessian, State const &state, RealVector &derivative, RealMatrix &hessian) const | shark::AbstractModel< RealVector, RealVector > | inlinevirtual |
write(OutArchive &archive) const | shark::Autoencoder< HiddenNeuron, OutputNeuron > | inlinevirtual |
~AbstractModel() | shark::AbstractModel< RealVector, RealVector > | inlinevirtual |
~INameable() | shark::INameable | inlinevirtual |
~IParameterizable() | shark::IParameterizable | inlinevirtual |
~ISerializable() | shark::ISerializable | inlinevirtual |