analytics.h File Reference
#include "Impl/analytics.h"
#include <shark/Unsupervised/RBM/RBM.h>
#include <shark/Data/Dataset.h>

Go to the source code of this file.

Namespaces

 shark
 AbstractMultiObjectiveOptimizer.
 

Enumerations

enum  shark::PartitionEstimationAlgorithm {
  shark::AIS, shark::AISMean, shark::TwoSidedAISMean, shark::AcceptanceRatio,
  shark::AcceptanceRatioMean
}
 

Functions

template<class RBMType >
double shark::logPartitionFunction (RBMType const &rbm, double beta=1.0)
 Calculates the value of the partition function $Z$. More...
 
template<class RBMType >
double shark::negativeLogLikelihoodFromLogPartition (RBMType const &rbm, UnlabeledData< RealVector > const &inputs, double logPartition, double beta=1.0)
 Estimates the negative log-likelihood of a set of input vectors under the models distribution using the partition function. More...
 
template<class RBMType >
double shark::negativeLogLikelihood (RBMType const &rbm, UnlabeledData< RealVector > const &inputs, double beta=1.0)
 Estimates the negative log-likelihood of a set of input vectors under the models distribution. More...
 
double shark::estimateLogFreeEnergyFromEnergySamples (RealMatrix const &energyDiffUp, RealMatrix const &energyDiffDown, PartitionEstimationAlgorithm algorithm=AIS)
 
template<class RBMType >
double shark::estimateLogFreeEnergy (RBMType &rbm, Data< RealVector > const &initDataset, RealVector const &beta, std::size_t samples, PartitionEstimationAlgorithm algorithm=AcceptanceRatioMean, float burnInPercentage=0.1)
 
template<class RBMType >
double shark::annealedImportanceSampling (RBMType &rbm, RealVector const &beta, std::size_t samples)
 
template<class RBMType >
double shark::estimateLogFreeEnergy (RBMType &rbm, Data< RealVector > const &initDataset, std::size_t chains, std::size_t samples, PartitionEstimationAlgorithm algorithm=AIS, float burnInPercentage=0.1)
 
template<class RBMType >
double shark::annealedImportanceSampling (RBMType &rbm, std::size_t chains, std::size_t samples)