Shark machine learning library
About Shark
News!
Contribute
Credits and copyright
Downloads
Getting Started
Installation
Using the docs
Documentation
Tutorials
Quick references
Class list
Global functions
FAQ
Showroom
examples
Data
Normalization.cpp
Go to the documentation of this file.
1
//===========================================================================
2
/*!
3
*
4
*
5
* \brief Data Normalization
6
*
7
* This file is part of the tutorial "Normalization of Input Data".
8
* By itself, it does not do anything particularly useful.
9
*
10
* \author T. Glasmachers
11
* \date 2014
12
*
13
*
14
* \par Copyright 1995-2017 Shark Development Team
15
*
16
* <BR><HR>
17
* This file is part of Shark.
18
* <http://shark-ml.org/>
19
*
20
* Shark is free software: you can redistribute it and/or modify
21
* it under the terms of the GNU Lesser General Public License as published
22
* by the Free Software Foundation, either version 3 of the License, or
23
* (at your option) any later version.
24
*
25
* Shark is distributed in the hope that it will be useful,
26
* but WITHOUT ANY WARRANTY; without even the implied warranty of
27
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
28
* GNU Lesser General Public License for more details.
29
*
30
* You should have received a copy of the GNU Lesser General Public License
31
* along with Shark. If not, see <http://www.gnu.org/licenses/>.
32
*
33
*/
34
//===========================================================================
35
36
#include <
shark/Data/Csv.h
>
37
38
#include <
shark/Models/Normalizer.h
>
39
#include <
shark/Algorithms/Trainers/NormalizeComponentsUnitVariance.h
>
40
using namespace
shark
;
41
42
#include <
shark/Models/LinearModel.h
>
43
#include <
shark/Algorithms/Trainers/NormalizeComponentsWhitening.h
>
44
45
int
main
()
46
{
47
// data container
48
UnlabeledData<RealVector>
data;
49
50
// create and train data normalizer
51
bool
removeMean =
true
;
52
Normalizer<RealVector>
normalizer;
53
NormalizeComponentsUnitVariance<RealVector>
normalizingTrainer(removeMean);
54
normalizingTrainer.
train
(normalizer, data);
55
56
// transform data
57
UnlabeledData<RealVector>
normalizedData =
transform
(data, normalizer);
58
59
// create and train data normalizer
60
LinearModel<RealVector>
whitener;
61
NormalizeComponentsWhitening
whiteningTrainer;
62
whiteningTrainer.
train
(whitener, data);
63
64
// transform data
65
UnlabeledData<RealVector>
whitenedData =
transform
(data, whitener);
66
}