Go to the source code of this file.
|
template<typename Matrix , typename randomType = shark::random::rng_type> |
Matrix | shark::sampleLatticeUniformly (randomType &rng, Matrix const &matrix, std::size_t const n, bool const keep_corners=true) |
|
RealMatrix | shark::preferenceAdjustedUnitVectors (std::size_t const n, std::size_t const sum, std::vector< Preference > const &preferences) |
| Return a set of evenly spaced n-dimensional points on the unit sphere clustered around the specified preference points. More...
|
|
RealMatrix | shark::preferenceAdjustedWeightVectors (std::size_t const n, std::size_t const sum, std::vector< Preference > const &preferences) |
| Return a set of of evenly spaced n-dimensional points on the "unit
simplex" clustered around the specified preference points. More...
|
|
std::size_t | shark::computeOptimalLatticeTicks (std::size_t const n, std::size_t const target_count) |
| Computes the number of Ticks for a grid of a certain size. More...
|
|
RealMatrix | shark::weightLattice (std::size_t const n, std::size_t const sum) |
| Returns a set of evenly spaced n-dimensional points on the "unit simplex". More...
|
|
RealMatrix | shark::unitVectorsOnLattice (std::size_t const n, std::size_t const sum) |
| Return a set of evenly spaced n-dimensional points on the unit sphere. More...
|
|
template<typename Matrix > |
UIntMatrix | shark::computeClosestNeighbourIndicesOnLattice (Matrix const &m, std::size_t const n) |
|