Shark machine learning library
About Shark
News!
Contribute
Credits and copyright
Downloads
Getting Started
Installation
Using the docs
Documentation
Tutorials
Quick references
Class list
Global functions
FAQ
Showroom
examples
Supervised
LDATutorial.cpp
Go to the documentation of this file.
1
//===========================================================================
2
/*!
3
*
4
*
5
* \brief Linear Discriminant Analysis Tutorial Sample Code
6
*
7
*
8
*
9
* \author C. Igel
10
* \date 2011
11
*
12
*
13
* \par Copyright 1995-2017 Shark Development Team
14
*
15
* <BR><HR>
16
* This file is part of Shark.
17
* <http://shark-ml.org/>
18
*
19
* Shark is free software: you can redistribute it and/or modify
20
* it under the terms of the GNU Lesser General Public License as published
21
* by the Free Software Foundation, either version 3 of the License, or
22
* (at your option) any later version.
23
*
24
* Shark is distributed in the hope that it will be useful,
25
* but WITHOUT ANY WARRANTY; without even the implied warranty of
26
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27
* GNU Lesser General Public License for more details.
28
*
29
* You should have received a copy of the GNU Lesser General Public License
30
* along with Shark. If not, see <http://www.gnu.org/licenses/>.
31
*
32
*/
33
//===========================================================================
34
35
#include <
shark/Data/Csv.h
>
36
#include <
shark/ObjectiveFunctions/Loss/ZeroOneLoss.h
>
37
38
#include <
shark/Algorithms/Trainers/LDA.h
>
39
40
#include <iostream>
41
42
using namespace
shark
;
43
using namespace
std
;
44
45
int
main
(
int
argc,
char
**argv) {
46
if
(argc < 2) {
47
cerr <<
"usage: "
<< argv[0] <<
" (filename)"
<< endl;
48
exit(EXIT_FAILURE);
49
}
50
// read data
51
ClassificationDataset
data;
52
try
{
53
importCSV
(data, argv[1],
LAST_COLUMN
,
' '
);
54
}
55
catch
(...) {
56
cerr <<
"unable to read data from file "
<< argv[1] << endl;
57
exit(EXIT_FAILURE);
58
}
59
60
cout <<
"overall number of data points: "
<< data.
numberOfElements
() <<
" "
61
<<
"number of classes: "
<<
numberOfClasses
(data) <<
" "
62
<<
"input dimension: "
<<
inputDimension
(data) << endl;
63
64
// split data into training and test set
65
ClassificationDataset
dataTest =
splitAtElement
(data, .5 * data.
numberOfElements
() );
66
cout <<
"training data points: "
<< data.
numberOfElements
() << endl;
67
cout <<
"test data points: "
<< dataTest.
numberOfElements
() << endl;
68
69
// define learning algorithm
70
LDA
ldaTrainer;
71
72
// define linear model
73
LinearClassifier<>
lda;
74
75
// train model
76
ldaTrainer.
train
(lda, data);
77
78
// evaluate classifier
79
Data<unsigned int>
prediction;
80
ZeroOneLoss<unsigned int>
loss;
81
82
prediction = lda(data.
inputs
());
83
cout <<
"LDA on training set accuracy: "
<< 1. - loss(data.
labels
(), prediction) << endl;
84
prediction = lda(dataTest.
inputs
());
85
cout <<
"LDA on test set accuracy: "
<< 1. - loss(dataTest.
labels
(), prediction) << endl;
86
}