DTLZ4.h
Go to the documentation of this file.
1 //===========================================================================
2 /*!
3  *
4  *
5  * \brief Objective function DTLZ4
6  *
7  *
8  *
9  * \author T.Voss, T. Glasmachers, O.Krause
10  * \date 2010-2011
11  *
12  *
13  * \par Copyright 1995-2017 Shark Development Team
14  *
15  * <BR><HR>
16  * This file is part of Shark.
17  * <http://shark-ml.org/>
18  *
19  * Shark is free software: you can redistribute it and/or modify
20  * it under the terms of the GNU Lesser General Public License as published
21  * by the Free Software Foundation, either version 3 of the License, or
22  * (at your option) any later version.
23  *
24  * Shark is distributed in the hope that it will be useful,
25  * but WITHOUT ANY WARRANTY; without even the implied warranty of
26  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27  * GNU Lesser General Public License for more details.
28  *
29  * You should have received a copy of the GNU Lesser General Public License
30  * along with Shark. If not, see <http://www.gnu.org/licenses/>.
31  *
32  */
33 //===========================================================================
34 #ifndef SHARK_OBJECTIVEFUNCTIONS_BENCHMARK_DTLZ4_H
35 #define SHARK_OBJECTIVEFUNCTIONS_BENCHMARK_DTLZ4_H
36 
39 
40 namespace shark {
41 /**
42  * \brief Implements the benchmark function DTLZ4.
43  *
44  * See: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.18.7531&rep=rep1&type=pdf
45  * The benchmark function exposes the following features:
46  * - Scalable w.r.t. the searchspace and w.r.t. the objective space.
47  * - Highly multi-modal.
48  */
50 {
51  DTLZ4(std::size_t numVariables = 0) : m_objectives(2), m_handler(SearchPointType(numVariables,0),SearchPointType(numVariables,1) ){
52  announceConstraintHandler(&m_handler);
53  }
54 
55  /// \brief From INameable: return the class name.
56  std::string name() const
57  { return "DTLZ4"; }
58 
59  std::size_t numberOfObjectives()const{
60  return m_objectives;
61  }
62  bool hasScalableObjectives()const{
63  return true;
64  }
66  m_objectives = numberOfObjectives;
67  }
68 
69  std::size_t numberOfVariables()const{
70  return m_handler.dimensions();
71  }
72 
74  return true;
75  }
76 
77  /// \brief Adjusts the number of variables if the function is scalable.
78  /// \param [in] numberOfVariables The new dimension.
80  m_handler.setBounds(
81  SearchPointType(numberOfVariables,0),
82  SearchPointType(numberOfVariables,1)
83  );
84  }
85 
86  ResultType eval( const SearchPointType & x ) const {
88 
89  ResultType value( numberOfObjectives() );
90 
91  const double alpha = 10.;
92  //~ const double alpha = 100.; //original, but numerically extremely difficult
93 
94  std::size_t k = numberOfVariables() - numberOfObjectives() + 1 ;
95  double g = 0.0;
96  for( std::size_t i = numberOfVariables() - k; i < numberOfVariables(); i++ )
97  g += sqr( x( i ) - 0.5);
98 
99  for (std::size_t i = 0; i < numberOfObjectives(); i++) {
100  value[i] = 1.0+g;
101  for( std::size_t j = 0; j < numberOfObjectives() - i -1; ++j)
102  value[i] *= std::cos(std::pow(x( j ),alpha) * M_PI / 2.0);
103 
104  if (i > 0)
105  value[i] *= std::sin(std::pow(x(numberOfObjectives() - i -1),alpha) * M_PI / 2.0);
106  }
107 
108  return value;
109  return value;
110  }
111 
112 private:
113  std::size_t m_objectives;
115 };
116 
117 }
118 #endif