Shark machine learning library
About Shark
News!
Contribute
Credits and copyright
Downloads
Getting Started
Installation
Using the docs
Documentation
Tutorials
Quick references
Class list
Global functions
FAQ
Showroom
include
shark
Unsupervised
RBM
BinaryRBM.h
Go to the documentation of this file.
1
/*!
2
*
3
*
4
* \brief Typedefs for the Binary-Binary RBM.
5
*
6
* \author Oswin Krause Asja Fischer
7
* \date 1.2014
8
*
9
*
10
* \par Copyright 1995-2017 Shark Development Team
11
*
12
* <BR><HR>
13
* This file is part of Shark.
14
* <http://shark-ml.org/>
15
*
16
* Shark is free software: you can redistribute it and/or modify
17
* it under the terms of the GNU Lesser General Public License as published
18
* by the Free Software Foundation, either version 3 of the License, or
19
* (at your option) any later version.
20
*
21
* Shark is distributed in the hope that it will be useful,
22
* but WITHOUT ANY WARRANTY; without even the implied warranty of
23
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24
* GNU Lesser General Public License for more details.
25
*
26
* You should have received a copy of the GNU Lesser General Public License
27
* along with Shark. If not, see <http://www.gnu.org/licenses/>.
28
*
29
*/
30
#ifndef SHARK_UNSUPERVISED_RBM_BINARYRBM_H
31
#define SHARK_UNSUPERVISED_RBM_BINARYRBM_H
32
33
#include <
shark/Unsupervised/RBM/RBM.h
>
34
#include <
shark/Unsupervised/RBM/Energy.h
>
35
36
#include <
shark/Unsupervised/RBM/Neuronlayers/BinaryLayer.h
>
37
#include <
shark/Unsupervised/RBM/Sampling/GibbsOperator.h
>
38
#include <
shark/Unsupervised/RBM/Sampling/TemperedMarkovChain.h
>
39
#include <
shark/Unsupervised/RBM/Sampling/MarkovChain.h
>
40
41
#include <
shark/Unsupervised/RBM/GradientApproximations/ContrastiveDivergence.h
>
42
#include <
shark/Unsupervised/RBM/GradientApproximations/MultiChainApproximator.h
>
43
#include <
shark/Unsupervised/RBM/GradientApproximations/SingleChainApproximator.h
>
44
#include <
shark/Core/Random.h
>
45
namespace
shark
{
46
47
typedef
RBM<BinaryLayer,BinaryLayer, random::rng_type>
BinaryRBM
;
48
typedef
GibbsOperator<BinaryRBM>
BinaryGibbsOperator
;
49
typedef
MarkovChain<BinaryGibbsOperator>
BinaryGibbsChain
;
50
typedef
TemperedMarkovChain<BinaryGibbsOperator>
BinaryPTChain
;
51
52
typedef
MultiChainApproximator<BinaryGibbsChain>
BinaryPCD
;
53
typedef
ContrastiveDivergence<BinaryGibbsOperator>
BinaryCD
;
54
typedef
SingleChainApproximator<BinaryPTChain>
BinaryParallelTempering
;
55
}
56
57
#endif