ApproximateKernelExpansion.h
Go to the documentation of this file.
1 //===========================================================================
2 /*!
3  *
4  *
5  * \brief The k-means clustering algorithm.
6  *
7  *
8  *
9  * \author T. Glasmachers
10  * \date 2011
11  *
12  *
13  * \par Copyright 1995-2017 Shark Development Team
14  *
15  * <BR><HR>
16  * This file is part of Shark.
17  * <http://shark-ml.org/>
18  *
19  * Shark is free software: you can redistribute it and/or modify
20  * it under the terms of the GNU Lesser General Public License as published
21  * by the Free Software Foundation, either version 3 of the License, or
22  * (at your option) any later version.
23  *
24  * Shark is distributed in the hope that it will be useful,
25  * but WITHOUT ANY WARRANTY; without even the implied warranty of
26  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27  * GNU Lesser General Public License for more details.
28  *
29  * You should have received a copy of the GNU Lesser General Public License
30  * along with Shark. If not, see <http://www.gnu.org/licenses/>.
31  *
32  */
33 //===========================================================================
34 
35 
36 #ifndef SHARK_ALGORITHMS_APPROXIMATE_KERNEL_EXPANSION_H
37 #define SHARK_ALGORITHMS_APPROXIMATE_KERNEL_EXPANSION_H
38 
39 #include <shark/Core/DLLSupport.h>
40 #include <shark/Core/Random.h>
42 namespace shark{
43 /// \brief Approximates a kernel expansion by a smaller one using an optimized basis.
44 ///
45 /// often, a kernel expansion can be represented much more compactly when the points defining the basis of the kernel
46 /// expansion are not fixed. The resulting kernel expansion can be evaluated much quicker than the original
47 /// when k is small compared to the number of the nonzero elements in the weight vector of the supplied kernel expansion.
48 ///
49 /// Given a kernel expansion with weight matrix alpha and Basis B of size m, finds a new weight matrix beta and Basis Z with k vectors
50 /// so that the difference of the resulting decision vectors is small in the RKHS defined by the supplied kernel.
51 ///
52 /// The algorithm proceeds by first performing a kMeans clustering as a good initialization. This initial guess is then optimized
53 /// by finding the closest weight vector to the original vector representable by the basis. Using this estimate, the basis
54 /// can then be optimized.
55 ///
56 /// The supplied kernel must be dereferentiable wrt its input parameters which excludes all kernels not defined on RealVector
57 ///
58 /// The algorithms is O(k^3 + k m) in each iteration.
59 ///
60 /// \param rng the Rng used for the kMeans clustering
61 /// \param model the kernel expansion to approximate
62 /// \param k the number of basis vectors to be used by the approximation
63 /// \param precision target precision of the gradient to be reached during optimization
64 SHARK_EXPORT_SYMBOL KernelExpansion<RealVector> approximateKernelExpansion(
65  random::rng_type& rng,
66  KernelExpansion<RealVector> const& model,
67  std::size_t k,
68  double precision = 1.e-8
69 );
70 
71 } // namespace shark
72 #endif