Shark machine learning library
About Shark
News!
Contribute
Credits and copyright
Downloads
Getting Started
Installation
Using the docs
Documentation
Tutorials
Quick references
Class list
Global functions
FAQ
Showroom
include
shark
ObjectiveFunctions
Loss
AbsoluteLoss.h
Go to the documentation of this file.
1
/*!
2
*
3
*
4
* \brief implements the absolute loss, which is the distance between labels and predictions
5
*
6
*
7
*
8
*
9
* \author Tobias Glasmachers
10
* \date 2011
11
*
12
*
13
* \par Copyright 1995-2017 Shark Development Team
14
*
15
* <BR><HR>
16
* This file is part of Shark.
17
* <http://shark-ml.org/>
18
*
19
* Shark is free software: you can redistribute it and/or modify
20
* it under the terms of the GNU Lesser General Public License as published
21
* by the Free Software Foundation, either version 3 of the License, or
22
* (at your option) any later version.
23
*
24
* Shark is distributed in the hope that it will be useful,
25
* but WITHOUT ANY WARRANTY; without even the implied warranty of
26
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27
* GNU Lesser General Public License for more details.
28
*
29
* You should have received a copy of the GNU Lesser General Public License
30
* along with Shark. If not, see <http://www.gnu.org/licenses/>.
31
*
32
*/
33
#ifndef SHARK_OBJECTIVEFUNCTIONS_LOSS_ABSOLUTELOSS_H
34
#define SHARK_OBJECTIVEFUNCTIONS_LOSS_ABSOLUTELOSS_H
35
36
37
#include <
shark/ObjectiveFunctions/Loss/AbstractLoss.h
>
38
namespace
shark
{
39
40
41
///
42
/// \brief absolute loss
43
///
44
/// The absolute loss is usually defined in a single dimension
45
/// as the absolute value of the difference between labels and
46
/// predictions. Here we generalize to multiple dimensions by
47
/// returning the norm.
48
///
49
template
<
class
VectorType = RealVector>
50
class
AbsoluteLoss
:
public
AbstractLoss
<VectorType, VectorType>
51
{
52
public
:
53
typedef
AbstractLoss<VectorType, VectorType>
base_type
;
54
typedef
typename
base_type::BatchLabelType
BatchLabelType
;
55
typedef
typename
base_type::BatchOutputType
BatchOutputType
;
56
57
/// constructor
58
AbsoluteLoss
()
59
{ }
60
61
62
/// \brief From INameable: return the class name.
63
std::string
name
()
const
64
{
return
"AbsoluteLoss"
; }
65
66
// annoyingness of C++ templates
67
using
base_type::eval
;
68
69
/// evaluate the loss \f$ \| labels - predictions \| \f$, which
70
/// is a slight generalization of the absolute value of the difference.
71
double
eval
(BatchLabelType
const
& labels, BatchOutputType
const
& predictions)
const
{
72
SIZE_CHECK
(labels.size1() == predictions.size1());
73
SIZE_CHECK
(labels.size2() == predictions.size2());
74
75
double
error = 0;
76
for
(std::size_t i = 0; i != labels.size1(); ++i){
77
error+=blas::distance(row(predictions,i),row(labels,i));
78
}
79
return
error;
80
}
81
};
82
83
84
}
85
#endif