00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027 #ifndef EIGEN_COMPLEX_SCHUR_H
00028 #define EIGEN_COMPLEX_SCHUR_H
00029
00030 #include "./EigenvaluesCommon.h"
00031 #include "./HessenbergDecomposition.h"
00032
00033 namespace internal {
00034 template<typename MatrixType, bool IsComplex> struct complex_schur_reduce_to_hessenberg;
00035 }
00036
00065 template<typename _MatrixType> class ComplexSchur
00066 {
00067 public:
00068 typedef _MatrixType MatrixType;
00069 enum {
00070 RowsAtCompileTime = MatrixType::RowsAtCompileTime,
00071 ColsAtCompileTime = MatrixType::ColsAtCompileTime,
00072 Options = MatrixType::Options,
00073 MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
00074 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
00075 };
00076
00078 typedef typename MatrixType::Scalar Scalar;
00079 typedef typename NumTraits<Scalar>::Real RealScalar;
00080 typedef typename MatrixType::Index Index;
00081
00088 typedef std::complex<RealScalar> ComplexScalar;
00089
00095 typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> ComplexMatrixType;
00096
00108 ComplexSchur(Index size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime)
00109 : m_matT(size,size),
00110 m_matU(size,size),
00111 m_hess(size),
00112 m_isInitialized(false),
00113 m_matUisUptodate(false)
00114 {}
00115
00125 ComplexSchur(const MatrixType& matrix, bool computeU = true)
00126 : m_matT(matrix.rows(),matrix.cols()),
00127 m_matU(matrix.rows(),matrix.cols()),
00128 m_hess(matrix.rows()),
00129 m_isInitialized(false),
00130 m_matUisUptodate(false)
00131 {
00132 compute(matrix, computeU);
00133 }
00134
00149 const ComplexMatrixType& matrixU() const
00150 {
00151 eigen_assert(m_isInitialized && "ComplexSchur is not initialized.");
00152 eigen_assert(m_matUisUptodate && "The matrix U has not been computed during the ComplexSchur decomposition.");
00153 return m_matU;
00154 }
00155
00173 const ComplexMatrixType& matrixT() const
00174 {
00175 eigen_assert(m_isInitialized && "ComplexSchur is not initialized.");
00176 return m_matT;
00177 }
00178
00198 ComplexSchur& compute(const MatrixType& matrix, bool computeU = true);
00199
00204 ComputationInfo info() const
00205 {
00206 eigen_assert(m_isInitialized && "RealSchur is not initialized.");
00207 return m_info;
00208 }
00209
00214 static const int m_maxIterations = 30;
00215
00216 protected:
00217 ComplexMatrixType m_matT, m_matU;
00218 HessenbergDecomposition<MatrixType> m_hess;
00219 ComputationInfo m_info;
00220 bool m_isInitialized;
00221 bool m_matUisUptodate;
00222
00223 private:
00224 bool subdiagonalEntryIsNeglegible(Index i);
00225 ComplexScalar computeShift(Index iu, Index iter);
00226 void reduceToTriangularForm(bool computeU);
00227 friend struct internal::complex_schur_reduce_to_hessenberg<MatrixType, NumTraits<Scalar>::IsComplex>;
00228 };
00229
00230 namespace internal {
00231
00233 template<typename RealScalar>
00234 std::complex<RealScalar> sqrt(const std::complex<RealScalar> &z)
00235 {
00236 RealScalar t, tre, tim;
00237
00238 t = abs(z);
00239
00240 if (abs(real(z)) <= abs(imag(z)))
00241 {
00242
00243 tre = sqrt(RealScalar(0.5)*(t + real(z)));
00244 tim = sqrt(RealScalar(0.5)*(t - real(z)));
00245 }
00246 else
00247 {
00248
00249 if (z.real() > RealScalar(0))
00250 {
00251 tre = t + z.real();
00252 tim = abs(imag(z))*sqrt(RealScalar(0.5)/tre);
00253 tre = sqrt(RealScalar(0.5)*tre);
00254 }
00255 else
00256 {
00257 tim = t - z.real();
00258 tre = abs(imag(z))*sqrt(RealScalar(0.5)/tim);
00259 tim = sqrt(RealScalar(0.5)*tim);
00260 }
00261 }
00262 if(z.imag() < RealScalar(0))
00263 tim = -tim;
00264
00265 return (std::complex<RealScalar>(tre,tim));
00266 }
00267 }
00268
00269
00273 template<typename MatrixType>
00274 inline bool ComplexSchur<MatrixType>::subdiagonalEntryIsNeglegible(Index i)
00275 {
00276 RealScalar d = internal::norm1(m_matT.coeff(i,i)) + internal::norm1(m_matT.coeff(i+1,i+1));
00277 RealScalar sd = internal::norm1(m_matT.coeff(i+1,i));
00278 if (internal::isMuchSmallerThan(sd, d, NumTraits<RealScalar>::epsilon()))
00279 {
00280 m_matT.coeffRef(i+1,i) = ComplexScalar(0);
00281 return true;
00282 }
00283 return false;
00284 }
00285
00286
00288 template<typename MatrixType>
00289 typename ComplexSchur<MatrixType>::ComplexScalar ComplexSchur<MatrixType>::computeShift(Index iu, Index iter)
00290 {
00291 if (iter == 10 || iter == 20)
00292 {
00293
00294 return internal::abs(internal::real(m_matT.coeff(iu,iu-1))) + internal::abs(internal::real(m_matT.coeff(iu-1,iu-2)));
00295 }
00296
00297
00298
00299 Matrix<ComplexScalar,2,2> t = m_matT.template block<2,2>(iu-1,iu-1);
00300 RealScalar normt = t.cwiseAbs().sum();
00301 t /= normt;
00302
00303 ComplexScalar b = t.coeff(0,1) * t.coeff(1,0);
00304 ComplexScalar c = t.coeff(0,0) - t.coeff(1,1);
00305 ComplexScalar disc = internal::sqrt(c*c + RealScalar(4)*b);
00306 ComplexScalar det = t.coeff(0,0) * t.coeff(1,1) - b;
00307 ComplexScalar trace = t.coeff(0,0) + t.coeff(1,1);
00308 ComplexScalar eival1 = (trace + disc) / RealScalar(2);
00309 ComplexScalar eival2 = (trace - disc) / RealScalar(2);
00310
00311 if(internal::norm1(eival1) > internal::norm1(eival2))
00312 eival2 = det / eival1;
00313 else
00314 eival1 = det / eival2;
00315
00316
00317 if(internal::norm1(eival1-t.coeff(1,1)) < internal::norm1(eival2-t.coeff(1,1)))
00318 return normt * eival1;
00319 else
00320 return normt * eival2;
00321 }
00322
00323
00324 template<typename MatrixType>
00325 ComplexSchur<MatrixType>& ComplexSchur<MatrixType>::compute(const MatrixType& matrix, bool computeU)
00326 {
00327 m_matUisUptodate = false;
00328 eigen_assert(matrix.cols() == matrix.rows());
00329
00330 if(matrix.cols() == 1)
00331 {
00332 m_matT = matrix.template cast<ComplexScalar>();
00333 if(computeU) m_matU = ComplexMatrixType::Identity(1,1);
00334 m_info = Success;
00335 m_isInitialized = true;
00336 m_matUisUptodate = computeU;
00337 return *this;
00338 }
00339
00340 internal::complex_schur_reduce_to_hessenberg<MatrixType, NumTraits<Scalar>::IsComplex>::run(*this, matrix, computeU);
00341 reduceToTriangularForm(computeU);
00342 return *this;
00343 }
00344
00345 namespace internal {
00346
00347
00348 template<typename MatrixType, bool IsComplex>
00349 struct complex_schur_reduce_to_hessenberg
00350 {
00351
00352 static void run(ComplexSchur<MatrixType>& _this, const MatrixType& matrix, bool computeU)
00353 {
00354 _this.m_hess.compute(matrix);
00355 _this.m_matT = _this.m_hess.matrixH();
00356 if(computeU) _this.m_matU = _this.m_hess.matrixQ();
00357 }
00358 };
00359
00360 template<typename MatrixType>
00361 struct complex_schur_reduce_to_hessenberg<MatrixType, false>
00362 {
00363 static void run(ComplexSchur<MatrixType>& _this, const MatrixType& matrix, bool computeU)
00364 {
00365 typedef typename ComplexSchur<MatrixType>::ComplexScalar ComplexScalar;
00366 typedef typename ComplexSchur<MatrixType>::ComplexMatrixType ComplexMatrixType;
00367
00368
00369 _this.m_hess.compute(matrix);
00370 _this.m_matT = _this.m_hess.matrixH().template cast<ComplexScalar>();
00371 if(computeU)
00372 {
00373
00374 MatrixType Q = _this.m_hess.matrixQ();
00375 _this.m_matU = Q.template cast<ComplexScalar>();
00376 }
00377 }
00378 };
00379
00380 }
00381
00382
00383 template<typename MatrixType>
00384 void ComplexSchur<MatrixType>::reduceToTriangularForm(bool computeU)
00385 {
00386
00387
00388
00389
00390 Index iu = m_matT.cols() - 1;
00391 Index il;
00392 Index iter = 0;
00393
00394 while(true)
00395 {
00396
00397 while(iu > 0)
00398 {
00399 if(!subdiagonalEntryIsNeglegible(iu-1)) break;
00400 iter = 0;
00401 --iu;
00402 }
00403
00404
00405 if(iu==0) break;
00406
00407
00408 iter++;
00409 if(iter > m_maxIterations) break;
00410
00411
00412 il = iu-1;
00413 while(il > 0 && !subdiagonalEntryIsNeglegible(il-1))
00414 {
00415 --il;
00416 }
00417
00418
00419
00420
00421
00422 ComplexScalar shift = computeShift(iu, iter);
00423 JacobiRotation<ComplexScalar> rot;
00424 rot.makeGivens(m_matT.coeff(il,il) - shift, m_matT.coeff(il+1,il));
00425 m_matT.rightCols(m_matT.cols()-il).applyOnTheLeft(il, il+1, rot.adjoint());
00426 m_matT.topRows(std::min(il+2,iu)+1).applyOnTheRight(il, il+1, rot);
00427 if(computeU) m_matU.applyOnTheRight(il, il+1, rot);
00428
00429 for(Index i=il+1 ; i<iu ; i++)
00430 {
00431 rot.makeGivens(m_matT.coeffRef(i,i-1), m_matT.coeffRef(i+1,i-1), &m_matT.coeffRef(i,i-1));
00432 m_matT.coeffRef(i+1,i-1) = ComplexScalar(0);
00433 m_matT.rightCols(m_matT.cols()-i).applyOnTheLeft(i, i+1, rot.adjoint());
00434 m_matT.topRows(std::min(i+2,iu)+1).applyOnTheRight(i, i+1, rot);
00435 if(computeU) m_matU.applyOnTheRight(i, i+1, rot);
00436 }
00437 }
00438
00439 if(iter <= m_maxIterations)
00440 m_info = Success;
00441 else
00442 m_info = NoConvergence;
00443
00444 m_isInitialized = true;
00445 m_matUisUptodate = computeU;
00446 }
00447
00448 #endif // EIGEN_COMPLEX_SCHUR_H