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Abstract. We propose a new way of deinterlacing using a total vari-
ation scheme. Starting by the Bayesian inference formulation of total
variation we do MAP by rewriting the problem into PDEs that can be
solved by simple numerical schemes. Normally deinterlacing schemes are
developed ad hoc with online hardware implementation directly at eye,
sometimes with some frequency analysis as only theoretical base. Our
belief is that mathematically well based image models are needed to
do optimal deinterlacing and by our work presented here, we hope to
prove it. Comparing the output of our scheme with those of ten known
deinterlacing schemes shows very promising results.

1 Introduction

Interlaced scan has been use since the birth of television in the 1930’s and is the
scanning format used in the television standards PAL and NTSC. Interlacing
is separates a full frame image into two parts called fields, one containing all
horizontally odd numbered line and the other containing all the even lines. When
recorded in interlaced scan the fields are separated in time and two neighboring
fields cannot be merged to one full frame without problems.

Interlacing saves bandwidth and lowers the cost of cameras and CRTs as it
is possible to combine a high rate of fields per second (to avoid large area flicker
in the image) with a relatively high vertical resolution. This looked fine to the
human visual system (HVS) in the early days of television but as screen size
grew and television sets produced brighter images, interlacing artefacts started
to show.

Interlacing artefacts have many names and are often mixed up when de-
scribed, as they can be described both from a frequency analysis point of view
and by their visual appearance. They are by visual appearance

- Line crawl due to vertical motion in the image and the time difference
between the two fields composing one frame.

- Serration of edges due to horizontal motion in the image and the time
difference between the two fields composing a frame. It happens to edges at all
orientations except those close to and at horizontal orientation.



- Interline flicker due to fine stationary details appearing only in either odd
or even fields of the image as they are to small (that is of to high a vertical
frequency) to be sampled in both even and odd fields.

A further discussion of frequency analysis and aliasing in interlaced image
sequences can be seen in [2] and [11].

One way of reducing the effect of these artifacts in terms of visibility to the
human eye is to interpolate new fields and raise the field rate as done in 100 Hz
TV sets [7] and [2]. Another way is to convert the interlaced sequence to a pro-
gressive sequence by interpolation of image information in the missing lines of
the fields to make a full frame of each field. This conversion is called deinterlac-
ing. Progressive scan is used in all PC monitors, in projectors, and in flat panel
displays (LCDs and Plasmas). So as many new displays for television are pro-
gressive and as PC and television are merged (set top boxes for digital television,
DVDs, television tuners for PCs, and video editing on PCs) there is obviously a
big need for deinterlacing. Deinterlacing is difficult, as turning e.g. 50 fields per
second into 50 frames per second requires a doubling of the amount of image
data without introducing new artefacts to annoy the human visual perception.
We propose a new scheme for deinterlacing developed from techniques used in
image and image sequence inpainting, and we have implemented ten known and
widely used deinterlacing schemes to compare it with. Our scheme uses Total
Variation (TV) based in a Bayesian framework and do MAP by minimizing an
energy functional. This is accomplished by deriving and solving solving corre-
sponding Partial Differential Equations (PDEs) obtained through the calculus
of variations. This is in contrast to many known deinterlacers that have been
developed ad hoc (and in a heuristic way) with online hardware implementa-
tion directly in eye. Therefore they are often simplified to keep hardware costs
down. We start with a theoretically well-based offline design that by further de-
velopment could end up as online hardware. Section 2 will describe the other
deinterlacing schemes implemented, section 3 will describe our proposed scheme,
section 4 shows the results and in section 5 we draw our conclusions.

2 Standard Deinterlacing

To measure the performance of our deinterlacing scheme, we have implemented
ten other schemes known from literature and/or available software and hardware
([2]).

Line Doubling (LDB) is very simple. Every interpolated horizontal line is a
repetition of the previous existing line ([15] and [17]). Line Averaging (LAV)
is a vertical average of the above and below pixels, since they are both known
([2], [15] and [17]). Field Insertion (FI), a.k.a. merging or weaving, fills in the
blanks with neighbouring lines in time and is essentially a temporal version
of LDB. The result is very similar to the image seen on an interlaced display
([2] and [17]). Field averaging (FAV) is a temporal version of LAV ([17]), while
Vertical Temporal interpolation (VT) is a simple 50/50 combination of LAV
and FAV ([17]). Many more advanced but not significantly better VT filters



have been suggested, e.g. by BBC Research ([16]). All schemes mentioned so
far are fixed, linear filters, whereas the next five are nonlinear and adapt to
certain conditions in their local neighborhood and chose one of several possible
interpolations depending on the local image content to yield better results.

Median filtering (Med) is a real classic in image processing and is used for
deinterlacing in many variations ([2], [3], [8], [14], [13] and [15]). We have chosen
a 3-tap vertical temporal version from [2] although we use the forward temporal
neighbor instead of the backwards. Motion adaptive deinterlacing (MA) can be
done in a countless number of ways and we have chosen a version suggested in [13]
and [14]. It does simple Motion detection and takes advantage of the qualities
of simpler schemes under different conditions: FAV in presence of no motion,
Median filtering when motion is slow and LAV when fast motion is detected.
Thresholds classify the motion. Weighted Vertical Temporal deinterlacing (wVT)
is a simpler way of doing motion adaptation than the previous mentioned scheme,
MA, and gives, instead of a hard switching between schemes, a smooth weighted
transition between temporal and vertical interpolation. The scheme is described
in detail in [9]. Edge Adaptive deinterlacing (EA) has been suggested in several
forms, e.g. in [6], [9] and [15]. We have chosen a scheme that based on Summed
Absolute Differences (SAD) selects a direction of interpolation as described in
[15], although we have modified it to detect the best of five directions, 0o, ±26o

and ±45o from vertical. Successive Approximation (SA) is the second level of
approximation in [9] although the its edge adaptive scheme working on the first
deinterlaced approximation has been swapped with the EA scheme that works
directly on the interpolated original and thereby taking the successiveness out
of the scheme but in the same instance also removing the possibility of error
propagation.

Med is a simple adaptive scheme, EA adopts to the orientation of edges while
MA, wVT and SA are Motion adaptive.

3 Total Variation Deinterlacing

In this section we introduce a novel deinterlacing scheme based on Total Vari-
ation minimization. We first proceed in a Bayesian fashion and deduce a vari-
ational formulation through MAP estimation in continuous settings following
[10]. We then compute the associated Euler-Lagrange equations and their asso-
ciated gradient descent formulations. The discretization of the latter will provide
our numerical schemes. We first introduce the notations used in the sequel. Ω
will denote the spatio-temporal domain of the progressive sequence, F ⊂ Ω the
domain of the known fields, u0 will denote the interlaced sequence, and by abuse
of notations, it will also denote the known data on F .

3.1 Bayesian Framework

Let u denote a progressive sequence and u0 the known sequence of interlaced
fields. According to Bayes’ Theorem

p(u|u0) ∝ p(u0|u)p(u) . (1)



The term on the left hand side is the a posteriori to be maximized (MAP) and
the first term on the right hand the side is a model term and the second is a prior
on image sequences. For the model term we choose a simple Dirac distribution
p(u0|u) = δ((u− u0)|F ) because we wish to keep the existing pixels unchanged.

We have investigated two distributions for the prior term p(u). First, by
viewing the image sequence u as a 3D volume, we set

p(u) ∝ e−λ
P

x |∇3u(x)| (2)

with x running over all the pixels in the sequence,∇3u a discrete spatio-temporal
gradient and λ a positive constant.

Nevertheless, it is somewhat unnatural to treat an image sequence as a 3D
volume. We introduce therefore a simple model that separates spatial and tem-
poral dimensions and we assume independence of the spatial and temporal dis-
tributions. Our image prior thus becomes

p(u) = p(us, ut) = p(us)p(ut) (3)

where p(us) refers to the spatial distribution of images and p(ut) to the temporal
correlation between frames. For the spatial prior we use

p(us) ∝ e−λ
P

x |∇u(x)| (4)

with x again running over all the pixels in the sequence, ∇u a discrete spatial
gradient and λ a positive constant. This has proven a robust model, well studied
in the computer vision community; see for instance [1], [4] or [12]. The temporal
prior

p(ut) ∝ e−µ
P

x |∂tu(x)| (5)

where ∂tu denotes the time-derivative of u and introduces the motion adaptive
aspect of our algorithm, µ being a positive constant.

3.2 Variational Formulation - Euler-Lagrange Equations

Following [10] in order to compute the Maximum A Posteriori (MAP) solution,
u, for our problems, we take the − log of each term to reformulate it as a mini-
mization problem. Instead of using the | · | function which is non differentiable at
the origin, we replace it by the approximation ψ(s2) =

√
s2 + ε2, with ε = 0.1

or 0.01 in our experiments. From (2), with this modification we obtain u as the
solution of

Argmin
u

∫

Ω

ψ(|∇3u|)dx, u = u0|F . (6)

From standard calculus of variations and the fact that ψ′(s)/s = 1/ψ(s), its
Euler-Lagrange equation is

−div
( ∇3u

ψ(|∇3u|)
)

= 0, u = u0|F (7)



where div is the divergence operator. The associated gradient descent equation
is

∂τu = div
( ∇3u

ψ(|∇3u|)
)

= 0, u = u0|F (8)

where τ denotes the evolution parameter (in order to not confuse it with the
time parameter t of the sequence), which is a 3D total variation filter.

From (4) and (5) we obtain the following minimization problem:

Argmin
u

∫

Ω

(ψ(|∇u|) + αψ(|∂tu|)) dx, u = u0|F (9)

the corresponding Euler-Lagrange equation being

−div
( ∇u

ψ(|∇u|)
)
− α∂t

(
∂tu

ψ(|∂tu|)
)

= 0, u = u0|F (10)

and its associated gradient descent equation is

∂τu = div
( ∇u

ψ(|∇u|)
)

+ α∂t

(
∂tu

ψ(|∂tu|)
)

, u = u0|F (11)

which combines a 2D total variation filter for the spatial part and a simple 1D
total variation filter for the temporal part. The constant α = µ/λ is a weight
between the spatial and the temporal part of the filter. This approach to energy
minimization gives convex but not strictly convex, solutions so several global
minimums might exist. Therefore the solution can be sensible to initialization.

3.3 Discretizations

The gradient descent equations are solved explicitly, using forward difference for
the evolution derivative ∂τ and central difference for the divergence terms.

For the 3D divergence, we have used a standard discretization on the 6 points
spatio-temporal neighborhood (see for instance [5], appendices, for details). For
the 2D divergence we have used three different schemes, one using a 4-point
neighborhood of the current pixel and two using a full 8-point neighborhood, as
described in [1]. The sensibility of the above PDEs to initial values has not given
us problems: At τ = 0 to initialize we take the LAV deinterlaced sequence as a
rough estimate with good results.

4 Results

We present now the results obtained with four image sequences. The first one,
Person, is a medium shot of a sitting person, turning the head and talking,
the motion can be said to be small. The second sequence, C&T, is a shot of
a driving car and truck followed by a tracking camera, the motion, which is
primarily horizontal, is up to ten pixels between two consecutive frames. The last



two sequences are both artificial with high contrast details. The BSNM sequence
is stationary while the BS has vertical, horizontal and diagonal motion, both
accelerated and constant. Figure 1 shows stills of the two sequences BS and
BSNM, whereas stills of the sequences C&T and Person cannot be published due
to copyright issues.

Fig. 1. From the top: A frame from the 128x128 sequence BSNM and frame one of the
512x512 sequence BS.

The four sequences are all progressive, so we have chosen to give the Mean
Square Error (MSE) as an objective measure of the performance of the schemes,

MSE =
1
N

∑

Ω\F
(u− uorg)2 (12)



which measures the square difference between the N interpolated pixels in the
output, u, and their removed counterparts in the original progressive sequence,
uorg.

We also give a subjective evaluation as the final judge of the result is the hu-
man visual system. A discussion of how to determine the quality of deinterlacing
is given in [2]. Table 1 gives the objective results.

Table 1. MSE from deinterlacing the four sequences Person, C&T, BS and BSNM. 3D
and 2D+1D are the two versions of our scheme with the number of iterations given
after the name. Clearly our schemes give the best results of all on the natural image
sequences Person and C&T

Scheme Person C&T BS BSNM

LDB 17.90 79.72 1623.6 755.8
LAV 5.53 26.31 924.6 678.4
FI 22.26 472.25 3935.1 0
FAV 9.03 284.22 2514.4 0
VT 5.62 94.34 1146.8 169.6
Med 9.27 65.72 1154.1 363.4
MA 5.53 28.18 840.6 363.4
wVT 5.07 67.97 1056.0 0
EA 8.77 32.87 957.1 210.1
SA 5.36 48.79 862.4 82.0
3D TV 2 5.02 27.00 1066.2 666.8
3D TV 50 4.85 56.29 1078.3 461.8
2D+1D TV 2 4.97 26.06 919.2 666.2
2D+1D TV 20 4.86 26.23 890.9 567.9
2D+1D TV 200 5.11 32.89 804.4 242.5

On C&T and BS it is seen from the MSE’s that in presence of large motion,
our scheme offers only little improvement, and only for the motion adaptive
2D+1D version, where the spatial and temporal gradients are separated. The
3D version suffers from having a spatio-temporal gradient. Over time (in terms
of number of iterations) the 2D+1D improves a lot on the BS but not on C&T,
which contains the larger motions of the two. Although the 3D does not perform
to good overall, it actually improves the per-frame MSE in 23 of the 98 frames
in C&T. In presence of none or only small motion, our scheme wins as it can be
seen from the MSE’s on the BSNM and Person. After only 2 iterations a 10 %
improvement is seen on the MSE of Person and it increases with the number
of iterations. Taking SA as initial guess instead of LAV on BSNM gave a 9 %
improvement in MSE after 20 iterations of 2D+1D.

The results for 2D+1D after 200 iterations show that convergence in MSE
stops for the two natural sequences. This is due to the smoothing of the TV



prior and noise in the original sequence. Further studies showed that the lowest
values in MSE was reached after 40-60 iterations.

Subjectively our scheme produces the best visible results on all four sequences
but BSNM. BSNM is fully stationary, so the temporal schemes give 100 % perfect
results on it. On BS and C&T the improvement is moderate, but on Person the
results from our scheme are clearly the best. After two iterations we already
se a good subjective result for the 2D+1D scheme, but after 20 iterations (and
50 for the 3D) the results are really good, even making us doubt which is the
deinterlaced when comparing to the progressive original.

Fig. 2. From top to bottom: deinterlacing with MA, wVT and 2D+1D TV. Only zoom-
ins of the full frame is shown here

Figure 2 top, middle and bottom also illustrate the potential of our method.
The sequence used for the illustration shows a pan of Christianborg Castle in
Copenhagen and as it only exists as interlaced, no MSE’s can be calculated. The
top picture shows the result of the wVT scheme while the middle one shows the
result of the MA scheme. Serious artifacts are visible for both schemes, serration
for wVT and erroneous detection and interpolation for MA. The bottom picture



shows the result of our 2D+1D scheme after 20 iterations, and clearly asserts
the quality improvement obtained with our scheme.

LAV in itself is, given its simplicity, a remarkably well performing deinterlacer
as the results in table 1 indicates, but as figure 3 shows, the 2D+1D scheme is
able to improve the quality of deinterlacing significantly after 20 iterations. Note
in the ornaments how the details have been sharpened and the jagged edges have
been removed. The sequence used, Church, is stationary, shot with the camera
on a camera mounting but rather noisy do to low lighting.

Fig. 3. Deinterlacing of the sequence Church. Left: 2D+1D TV after 20 iterations.
Right: LAV used as initialization for 2D+1D TV. Clearly 2D+1D TV improves on
the LAV initialization. Only zoom-ins of the full frame is shown here. Notice the in
particular the arm of the upper angel and the helixes (spirals) in the middle



Further investigations on the 2D+1D schemes has also shown that the num-
ber of iterations to obtain a certain quality of the result can be reduced by a
factor of three to six by increasing the time step in the gradient descent with-
out the loss of stability. The number of operations and complexity per iteration
of the 2D+1D schemes are the same as for the most complex of the ten known
deinterlacing schemes, SA. This together with the increase in time step and good
results after a few iterations gives rise to our believes that an online hardware
implementation of 2D+1D TV MA Deinterlacing is possible.

5 Conclusion

We have shown that a technique so far used for inpainting can be redeveloped to
do deinterlacing and further on our Total Variation Motion Adaptive Deinter-
lacing outperforms ten known fixed or adaptive deinterlacers. Our deinterlacer
is still in its youth and its potential not yet fully explored. The quality of results
and the computational complexity both indicate that hardware implementation
can reach high quality results in realtime.

TV deinterlacing is a novel approach and introduces a whole new theoretical
framework for video processing and the results advocate the further exploration
of the ideas presented here.
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