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Headtracking using a Wiimote 1 Introduction

Abstract

This paper presents our adaption of an approach to achieving a virtual real-
ity like experience on a typical monitor using the NintendoR© [19] Wiimote.
By using the infrared camera on the Wiimote combined with infrared light
emitting diodes positioned on the user’s head, we achieve the effect that the
content visible on the monitor adapts to the position of the head relative to
the monitor. Thereby we achieve the same effect as when looking through
a window; what is visible depends on the angle and distance from the window.

1 Introduction

In line with the growth of the game industry, the demands for realism in
modern computer games increase as well. Realism is often raised through im-
proved graphics, artificial intelligence, sound effects and similar. The player
interaction devices are however, mostly limited to the use of mouse, key-
board and conventional game controllers. The possibilities have improved
somewhat by the introduction of Wii1, Nintendo’sR© newest game console
which was introduced in 2006. Now players can interact more directly and
naturally with the games, thus achieving higher realism. This is done through
the Wiimote controller which, among other things, features motion-sensing.
However, critical areas are still left behind. There is for example poor access
to equipment allowing the player to change the view perspective by moving
her head. This can indeed already be achieved using available virtual reality
(VR) equipment, but for most users it is not within an acceptable price range.

It turns out that equipment allowing this kind of interaction does not neces-
sarily have to be expensive. It can be achieved using an infrared (IR) camera
and some light emitting diodes (LEDs). By placing the camera by the mon-
itor and the LEDs by the head, the placement of the LEDs can be found,
hereby allowing us to determine the user’s movement and changing the field
of view according to this. This yields the illusion that the monitor is like a
physical window into another room instead of just a static photo. This can
increase the realism for especially 3D games dramatically.

Johnny Lee [14] from Carnegie Mellon University has realized the task using
the IR camera on the Wiimote to facilitate the job using a simple setup illus-
trated in figure 1. Normally registration of images is a difficult job and forms

1Wii is a registered trademark of NintendoR©
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Headtracking using a Wiimote 2 Wiimote

Figure 1: The setup used to perform headtracking with the Wiimote and IR LEDs.

an entire research field, but when taking advantage of the build in IR camera
and image processor of the Wiimote, it becomes quite simple to detect and
track numerous positions. Furthermore the Bluetooth support and low price
of the controller makes it easily accessible. Based on these arguments, we feel
that the idea presented by Johnny Lee calls for further investigation. In this
paper we will therefore try to mimic his work and determine the field of view
in a 3D game like world from the available data. Through a user study we
furthermore wish to evaluate whether our solution is suited for interaction
in a 3D world.

To keep the focus of the project on the subject at hand, we will assume that
the reader is familiar with the process of setting up a camera in a 3D scene.
Thus terms like the up vector and projection matrix will not be explained in
the paper. A thorough introduction to this subject can be found in [4].

Included with the paper is a CD-ROM containing a digital copy of the paper,
the source code, application program interface (API) documentation and a
video illustrating our solution in action.

2 Wiimote

The Wiimote is a controller for the Wii. In contrast to most other controllers
for game consoles, the input methods are not just buttons and analogue
sticks, but an IR camera and motion-sensing. In this section we will describe
these features. The technical specification is based on [3, 29, 30].
The appearance of the Wiimote is designed much like a TV remote as seen
in Figure 2. It has 12 buttons, where 11 are on the top and one is located
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Figure 2: The Wiimote seen from the side, front, top and back.

underneath. The Wiimote has 16 kilobyte EEPROM2 of which a part is
freely accessible and another is reserved. The Wiimote also houses a speaker
and the top has holes which the sound can come out of. Four blue LEDs are
on the top. If the Wiimote connects to a Wii the LEDs first indicate the
battery level and afterwards which number the Wiimote is connected as. A
small rotating motor is placed in the Wiimote which can make the Wiimote
vibrate. A plug is located in the end of the Wiimote. Through this plug
attachments can be connected. A couple of peripherals have been released.
However, the most used is the Nunchuck. The Nunchuck is a device with two
buttons, an analogue stick and motion-sensing as the Wiimote itself.
The Wiimote can detect motion in all 3 dimensions. This is achieved through
accelerometers inside. For a thorough discussion of the functionality, see [20].

The front of the Wiimote has a small black area like a normal TV remote.
The difference is that a TV remote has an IR LED beneath, where the Wi-
imote has an IR camera. By placing a so called sensor bar (essentially IR
LEDs powered by the Wii) below the TV, the Wiimote can be used as a
pointing device for the Wii. As can be seen on Figure 3 the LEDs in the
sensor bar are located with space between them. This makes it possible to
calculate the relative position of the Wiimote with regards to the sensor bar.
When using the Wiimote as a pointing device for the Wii, one doesn’t actu-
ally point at things on the TV, but is pointing relative to the TV.

2Electrically Erasable Programmable Read-Only Memory

5 of 81



Headtracking using a Wiimote 3 Previous Work

Figure 3: The sensor bar for the Wiimote seen from the front.

To minimize the amount of data being transferred from the Wiimote to the
Wii, it does not actually transfer every image taken by the Wiimote. In-
stead the Wiimote calculates the position of each point and sends the x- and
y-coordinate for each of them together. It can also send other information
such as a rough size of the points. It is noted that the LEDs that can be
seen of Figure 3 are taken as two separate LEDs and not 10. This is because
they are located so close to each other. The Wiimote can register up to four
separate points at a time.
The Wiimote does not just take an image, analyze it and send the result
of the positions to the Wii, it also keeps track of the points. Every time a
point is detected it is assigned a number from one to four. If for instance two
points are detected and the one marked as 1 is moved out of range, the other
point is still marked as 2. If the point is then moved within range again it
is marked as 1, but the Wiimote of course can not tell if it is the same LED
as before or a new one.

3 Previous Work

Since the release of the Wiimote several papers have been published, de-
scribing how to interact with graphical applications like games in a new way
using the Wiimote. In this section we will comment on a selection of the
most relevant papers in the field.

The paper [27] discusses how gestures in 3D can be performed with the Wi-
imote and used to interact with a 3D environment. Through user studies
the paper examines which gestures are appropriate to reflect common in-
teractions like waving, with the 3D virtual world, Second Life [13]. The
evaluation of the gestures depends solely on data from the accelerometer,
thus the IR camera and buttons on the Wiimote are not used. The paper
focuses on a human-computer interaction (HCI) aspect of the problem and
does not discuss the technical aspect of how the data are interpreted or if
they encountered any problems using the Wiimote.
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Headtracking using a Wiimote 3 Previous Work

In [23] it is described how the Wiimote is used to interact in a 3D virtual
reality theatre. They have adapted the Half-Life 2 [2] game engine to run
in the two-walled theatre and to use the Wiimote to look around and aim.
Both buttons, accelerometer and IR camera is used to interpret the position
of the user and user actions. Since the IR part is essential, the IR camera is
described in great detail and several measurements have been performed to
determine the range in which the IR works.
Due to the limited IR angles, several sensor bars are used to make sure that
at least one IR LED is almost always visible. Because the Wiimote was de-
signed to cope with one to four IR LEDs, they have made several extensions
to the default interpretation of the data. Furthermore the problem of lack of
visible LEDs for short periods is briefly discussed.

In the paper [25], it is presented how the Wiimote can be used for inter-
action in three existing applications; two games and a drawing application
for children. For the two games, only data from the accelerometer is used.
Especially in one of the games, this poses a problem, since it is difficult to
estimate the exact position of the controller. This problem is also described
in [20].
For the drawing application both accelerometer and IR camera is used to
facilitate the painting. Here especially the problem of determining the phys-
ical distance between the Wiimote and the sensor bar is described. Since the
main focus of the paper is the HCI aspect, there are few details regarding
the actual data analysis and implementation.

In [20] they tried to estimate the movement and orientation of the Wiimote
based on the date from the accelerometer, while the IR functionality is omit-
ted. The intention was to be able to navigate objects in a 3D environment.
In contrast to [27, 23, 25] the approach is significantly more technical. The
communication with the Wiimote as a human interface device (HID) on
a computer, the theory behind the accelerometer and algorithms for data
analysis are described in great detail. Also detailed information about en-
countered problems related to noise is presented.

In general the previous work within the field has mainly been focusing on the
accelerometer in the Wiimote ([27, 23, 25, 20, 17]) while only few have used
the IR camera and sensor bar ([23, 25]). In general the buttons have been
ignored since these are the same as on any generic game controller. In all
the papers mentioned, the user interacts directly with the Wiimote to per-
form the actions, thus yielding a replacement for mouse, keyboard or game
controller. In contrast we want to use the Wiimote as a passive device and
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instead let the user move the sensor bar. We have not been able to find any
papers describing this type of use. However, Johnny Lee has demonstrated
this use in several videos and on his blog [14]. Unfortunately the only docu-
mentation on his projects is the source code.

4 Analysis

In this section we will first give a general analysis of the problem we are
trying to solve. This is followed by a concrete analysis of the solution of
Johnny Lee and the methods used. Finally this will result in a description
of the solution we will use to achieve our goal.

4.1 Defining the desired effect

As described briefly in the introduction, our goal is to use headtracking to
achieve a VR like effect when looking at a monitor. The effect we wish to
obtain can be clarified with the following analogy which is also used in [15].
A traditional monitor can be compared to a photo in a frame. No matter
at what distance or angle you watch the motive, you see exactly the same
content. This is due to the 2D nature of the photo or image displayed, even
though the original content was three dimensional. However, if you remove
the photo from the frame, this changes. Now, what you see through the
frame depends on the angle and distance that the frame is viewed, exactly
like when looking through a window. This effect is what we wish to achieve
on the monitor. Depending on the position of the user, the visible content
changes to reflect her movement.

4.1.1 Movement scenarios

The movement that the user can make can be separated into two general
categories; changes in the angle between the front of the monitor and the
user and changes in the distance between the monitor and the user. The
change of angle is an effect of the user moving around in a constant dis-
tance from the centre of the screen (i.e. the position of the Wiimote). When
this occurs, some elements should vanish while others should become visible.
Again, using a window as an example; if you stand in front of a window
and move to the left, you can see more to the right on the other side of the
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window and vice versa. The situation is illustrated from above in Figure 4(a).

Figure 4: The change in the visible field when the user moves to a different angle relative
to (a) a window and (b) a monitor.

As a contrast, the normal scenario when using a monitor is shown in Figure
4(b) where it is obvious that the angle of view has no influence and thus
seems unrealistic. The same principles also apply when lowering or raising
your head; you can see more of the sky through a window when crouching
than when standing.
The other category, change of distance, is a different effect as the distance
between the monitor and the user determines how much of an image should
be visible overall. Returning to the window example; the closer one is to
a window, the more one can see outside the window in all directions. The
situation is illustrated in Figure 5(a).

Figure 5: The change in the visible field when the user moves closer to (a) a window and
(b) a monitor.

As one moves closer to the window, more of the outside becomes visible. As
before, Figure 5(b) is provided as a contrast, showing how distance has no
effect when using a traditional monitor.
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To enable the kind of interaction described above, the computer needs to
know the position of the user’s head relative to the monitor. This problem is
known as headtracking3. As mentioned, headtracking in general is difficult
since the process of finding areas of interest and registering several images is
complicated. However due to the IR camera and onboard image processor
of the Wiimote, the task is significantly simplified. As described in section
5.2.2 the data returned from the Wiimote contains absolute coordinates of
up to four points and optionally size estimates. Since little information can
be obtained when only one point is used, as the size estimate is too coarse,
two points are required. This is also the amount of points recognized when
using the sensor bar.
This approach is the foundation in the solution of Johnny Lee as well as in
our solution. In the following sections we will discuss these.

4.2 The solution of Johnny Lee

In this section we will give an analysis of how Johnny Lee has constructed
his solution and how he has solved certain problems. His solution is very
comprehensive which makes it impossible to mention all details, but we will
focus on the key elements. As an example, his solution is able to handle a
Nunchuck, which is irrelevant to this project. Since our analysis is based
solely on his source code [16] and a few comments with it, we can not com-
ment on the reasoning behind his choices, but only the final solution. Lee’s
implementation is made in C# and can be split in three parts; communica-
tion with the Wiimote, interpreting the data and visualization.

All interaction with the Wiimote is done through WiimoteLib [21], which
is not developed by Lee. This library contains methods for every kind of
interaction with the Wiimote which is publicly known at the moment. The
implementation is made quite similar to our approach described later, in sec-
tion 5.2. The parts we did not mention there are not needed and Lee does
not use them in his program. He basically uses the library to retrieve the
position of the LEDs and then use these positions.

4.2.1 Interpretation of data

When the position of the points is known, the user’s position can be cal-
culated. The distance between the two LEDs is inverse proportional to the

3The term headtracking also covers the area of recognizing facial expressions.
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distance between the user and the screen. However, instead of just using
the distance directly, Lee takes the size of the monitor into consideration.
This is done by allowing the user to specify the size of her monitor. If the
information is not given, a default value will be used.

As can be seen in Figure 6 the distance from the user to the screen is inverse
proportional to the tangent to half the viewing angle measured between the
LEDs. To calculate this distance, the distance between the two LEDs is
scaled with the size of the monitor and used to derive the relative distance
between the user and the monitor. This distance is then used to calculate
the position of the user relative to the monitor: By using the sine-function on
the angle which indicates the distance between the LEDs on the x-axis, the
x-coordinate relative to the camera-space is known. This method assumes,
that the user is centred on the x-axis, when directly in front of the Wiimote.
The y-coordinate in camera-space is calculated much the same way, but this
coordinate is not assumed to be centred directly in front of the Wiimote. To
take this into consideration an offset is used. This offset can also be changed
by the user to fit the setup used.
In the above calculations we assume the position is centred around the origin.
Since the Wiimote returns values ranging from 0 to 1023 and 0 to 767 for
the x and y respectively, we must deduct 512 from the x and 384 from y.

Figure 6: Interpreting the LEDs’ position.

Combined, the x- and y-coordinate and distance from user to screen can give
the camera position, camera target and camera up vector. From these three
vectors the three axis of the coordinate system to be used can be determined:

zaxis =
position− target

||position− target||
(1)

xaxis =
up vector× zaxis

||up vector× zaxis||
(2)
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yaxis = zaxis× xaxis (3)

The view-matrix can now be determined from the axis by the following ma-
trix:


0

xaxis yaxis zaxis 0
0

−xaxis · position −yaxis · position −zaxis · position 1

 (4)

The boundaries of the screen are also needed. The x- and y-coordinate gives
the offset of the boundaries, while the distance gives the scale. If the offset
was not used, objects closest to the user would move around, which must not
happen. By using the offset it is ensured, that when the camera moves from
side to side and up and down the front plane in the view-frustum remains
the same. To keep the view-frustum the same when the camera is moved
back and forth the boundaries must also be scaled with the front clipping
plane. The boundaries are used to calculate the projection-matrix, which is
constructed as follows:



2 · front plane
right−left 0 0 0

0 2 · front plane
top−bottom 0 0

left+right
right−left

top+bottom
top−bottom

back plane
front plane− back plane −1

0 0 front plane·back plane
front plane− back plane 0


(5)

It is noted, that the frustum given by this matrix is not necessarily the same
to the left and right of the camera. However, this is needed because the plane
closest to the user has to be locked to the monitor to achieve the effect of
looking through a window.
Calculating these two matrices finishes the interpretation of the data, since
the world matrix needs not be modified.
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The visualization is not particularly interesting. After the matrices needed
for the transformation are calculated, the graphics are made as in most other
3D applications. This means that objects are shown by transforming them
from the 3D space into 2D space by using the mentioned matrices. After
this, they are rendered to the monitor.

4.2.2 Robustness

An aspect not taken into consideration in the solution is robustness. A key
element in the approach to headtracking is that the Wiimote is able to track
the LEDs at all times. However this might not always be the case. One
problem is that the sensor bar can be moved outside the field of view of the
camera. This happens if the user moves too far away or steps outside the
angles of the camera. The other situation is if the line of sight is obstructed,
either by the user, another person or by some object.
In the solution of Lee it is detected and displayed whether both LEDs are
visible. If not, the perspective is simply not changed and thus, the content on
the screen will simply freeze. When both LEDs then become visible again, a
new set of matrices are calculated, solely based on the new LED positions.
While this indeed works, it can cause the perspective and hence the content
of the monitor to change dramatically if the user has moved a lot since both
LEDs were last visible. If there are lot of obstructions or the LEDs are not
sufficiently bright, this will cause an almost flickering effect due to the sud-
den, non-smooth changes in the perspective. Possible ways to handle the
missing LEDs will be discussed in section 4.3.3.

4.2.3 High frequency noise

In the solution of Lee the movement detected by the Wiimote is used directly
in the calculation of the perspective. However, when a person moves from
one point to another, it is not only the general motion that is detected, but
also a slight jittering due to small movement back and forth. For example
this can happen if the user is unable to hold the head still and constantly
turns and nods a bit. When movement containing this high frequency noise
is mapped directly to the virtual world it can potentially result in perspective
changes when standing still.
One could argue that constant small variations in head position are normal
and thus it is only realistic to actually map these motions to the monitor.
However, when displayed on a monitor, it does not seem realistic. Instead
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it will seem like the screen is shaking which makes it an undesired effect.
Of cause the magnitude of the effect depends on several things like the user
and location. Since the solution of Lee is intended to be used at home, the
location has little impact, but imagine that it should be used with a portable
device and thus e.g. in a car. Even though this is not the case and for many
users it might not be a noticeable problem, we still think the subject should
be considered. Therefore we have included a brief discussion of ways it can
be handled in section 4.3.4.

4.3 Our solution

We got the initial idea for the project from the work of Johnny Lee. There-
fore our solution bears much resemblance to his. Especially how we exactly
calculate the matrices used to set up the camera are heavily inspired by his
work. Because of the similarities, we will focus on the aspects not mentioned
in the previous section.

4.3.1 Position estimation

Since the two IR LEDs are placed centred on the users head, the midpoint
between the two detected points can be considered an approximation to the
user’s head, which is where the camera should be placed. By looking at the
x- and y-coordinate of the midpoint, it is possible to determine the angle
between the centre of the monitor and the user. However by looking solely
at the reported x- and y-coordinate, no information regarding the distance
between the monitor and the user is available. Instead the distance can be
determined by calculating the distance between the two points. As the dis-
tance between the points becomes smaller when the two LEDs are further
away from the camera, the distance between monitor and user can be approx-
imated as described in section 4.2.1. Combined these data make it possible
to determine the position of the user. However, it should be noted that if
the LEDs are not parallel with the monitor, they will appear closer to each
other, thus the calculated distance is too large. As long as the user faces the
monitor, the error is minimal and therefore there is no need to counter this
problem.
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4.3.2 Setting up the camera

To set up a camera, three vectors must be known. These are the camera po-
sition, camera target and camera up vector. If the distance from the user to
the screen is called distance, the camera position is the vector (x, y, distance),
the camera target is (x, y, 0) and the camera up vector is (0, 1, 0). It should
be noted that with this up vector, the screen will remain still if the user tilts
his head, but going back to the analogy with the window one can see this is
in fact correct.
Besides these three vectors, the camera also needs to know the boundaries
of the virtual world to be displayed. Normally when rendering a 3D world
the boundaries do not change, but this is needed here because we want to
lock the monitor to a certain position in the virtual world. These boundaries
can be determined from the x- and y-coordinate and the distance. The x
and y determines how much the window must be translated along the two
corresponding axis and the distance is the scaling factor of the boundaries.
When all these variables are determined the transformation matrices can be
constructed as described in section 4.2. Afterwards the rendering of the scene
can be performed. Since this is done quite simple with OpenGL [24], we will
not cover this further.

4.3.3 Robustness

As described in section 4.2.2, we cannot assume that both LEDs are visible
at all times, might it be due to the user moving to far away from the screen
or an object getting between the Wiimote and the LEDs. The first problem
encountered is that data is missing at some point and the second problem is
what to do when both LEDs become visible again. We will discuss these two
problems and possible solutions here.

When the Wiimote is unable to detect a LED it will send a default value.
Therefore it is easy to detect when the LEDs are out of sight. The simplest
solution is just to use this value as if the data is correct. However, this will
of course give a poor result because it will make the screen move a large
distance instantly.
Another solution is to pause the game until the LEDs are detected again.
This solution will notify the user immediately and make her solve the prob-
lem (e.g. move within sight or remove the obstructing object), but will also
ruin the flow of the game.
We have chosen a third option where we keep the last correct detected value.
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This will stop the screen from making sudden movements and will not ruin
the flow of the game. A problem here can be that the user perhaps does
not notice that the LEDs are out of sight. To avoid this, some sort of visual
indication can be given, for instance a small blinking icon in the corner of
the screen.

The second problem is as mentioned what to do when the LEDs become de-
tectable again. No matter which one of the above solutions is chosen it will
still be a problem. If someone briefly moves between the Wiimote and the
user, the x- and y-coordinate will be fairly similar before and after. How-
ever, if the user has moved significantly, the detected coordinates will change
accordingly, yielding a large, sudden movement on the screen.
Instead of just using the new value as suggested above, the old value can
also be taken into account. For instance the new value can be weighted with
0.7 and the old value with 0.3. Effectively this will result in an interpolation
between the two positions, which will make the transition from the old to the
new position smooth. Even though the screen for a moment will behave dif-
ferently than the user, the advantage that no jumping appears outweighs this
problem. However, it has to be decided how long this transition must take.
The longer it is, the more smooth, but if it is too long, the responsiveness
will seem poor. Somewhere around a second will therefore be fitting. Instead
of just using some of the old value when the LEDs have been undetected, it
can be done always. The advantage is that this is a simple way to reduce
the high frequency noise, which we will discuss further in section 4.3.4. The
disadvantage is that the overall responsiveness is lowered. This approach is
also taken in the driver library cWiiMote [5].

In the above described scenarios it is only considered what happens if both
of the LEDs are out of sight. However, it could happen that one LED was
detected and the other undetected. This will probably happen less frequently
because the two LEDs are relatively close to each other, but it is a problem
nonetheless. One solution could be to keep the old value for the undetected
and still update the detected one. This is a poor solution since the result
quickly becomes completely false. For instance a movement in the direction
of the undetected LED would result in a flipping of the two LEDs.
Another solution is to let the two LEDs move together. If the detected LED
moves in one direction the old value of the undetected LED is moved the
same way. This will give a better result than the first solution, but still not
be perfect since for instance moving closer to or farther from the screen will
go unnoticed. In both this and the previously mentioned solution the result
could be that the screen moves differently from the user.
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The simplest solution is to treat it as both LEDs are undetected. The ad-
vantage of this solution is that the user becomes aware of the problem and
can solve it. Another advantage is that the screen will not move differently
from the user. We find this solution the best and have therefore chosen it.

4.3.4 Removing high frequency noise

In section 4.2.3 we described how high frequency noise could occur due to
small, unintentional variation in the position of the user. To avoid this prob-
lem some sort of data analysis is needed. The simplest solution is to discard
all movement below a certain threshold. This solves the problem of the screen
shaking when the user is still, but when the user is moving the problem would
still occur.

Another solution is to predict where the user will move. This can be done
by using a small set of the previously values and then calculate the average
velocity and speed of the user. This will reduce the problem much, but it
has an undesired side-effect. For instance when the user moves, but makes
a sharp turn the prediction is wrong. However, as long as the user moves
relatively smoothly the error in the prediction will be small and unnoticeable.

A third option is to perform a filtering of the data. By considering the data
as a signal where the relevant data is made up from low frequencies and the
noise is made from high frequencies, we can perform a low-pass filtering of
the signal to reduce the noise.
Low-pass filtering works by letting the low frequencies pass and reduce the
amplitude of the frequencies above some cut-off frequency by smoothing the
signal. It is done by performing a convolution of the signal with some filter.
The simplest low-pass filter is the box filter which simply cuts off frequencies
above the specified threshold. However this can lead to undesired effects
because of the discontinuity of the filter. A better option is to use a smooth
filter. One commonly used is the Gaussian filter. It is defined by the function

G(x) =
1√
2πσ

e−
x2

2σ2 (6)

where σ is the standard deviation of the distribution. Due to the bell like
shape of the function, one achieves a much smoother filtering than with a box
filter. There exist several other smooth filters that can be used for low-pass
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filtering, but we will not discuss them here.

When choosing the cut-off frequency we want a value such that all small
variations are removed while actual motion is kept intact. This calls for a
trade-off. If the cut-off frequency is low, most or all of the noise is removed
and the perspective will remain very calm. However we run the risk of re-
moving frequencies which are actually user movement. This will result in less
responsive behaviour. On the other hand, if a high cut-off frequency is used,
we might end up allowing much of the noise to pass, yielding the filtering
useless. Therefore one must be careful when choosing the cut-off frequency.
Another drawback with the method is that it is necessary to delay the signal
a little. If the Gaussian kernel used has a size of 7, the reported signal will be
three samples behind. This is because the three previous and three following
samples must be considered when filtering any given sample. If the filter
becomes big, it can therefore result in a noticeable delay from the sensor bar
is moved, to the content on the monitor adjusts. To avoid further delays, it
must also be guaranteed that the filtering can be performed in real time. If
not, increasingly large delays will occur over time.

To determine the optimal method for predicting the user’s movement, it
would require a large number of experiments. Since this is too time consum-
ing for this project, we have chosen not to use any prediction or filtering. We
do however, interpolate between the previous position and current position
of the user as mentioned in section 4.3.3. We have done this because it is
an extremely easy way of reducing the high frequency noise, but the result
is far from as good as the other mentioned solutions.

5 Communication

In this section we will describe how the communication between the Wiimote
and the computer or Wii is performed. The general mean of communication
is discussed first, followed by specific details for the Wiimote, which are based
on [29, 30].

5.1 Bluetooth

Bluetooth [26] is a specification for wireless communication between devices
over short distances. A large part of the specification is optional, which al-
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lows a minimum set of features to be implemented in a device and exclude
those unnecessary.
A device connected with other devices can function as a master, a slave or
both if needed. A master device controls the communication and up to seven
slaves can connect to a master. This network of up to eight devices is called
a piconet. If it is necessary to connect more than eight devices at a time, a
slave can switch to being both a slave and a master, hereby creating a new
piconet and connecting up to seven more devices.

If a Bluetooth device is queried it will transmit its device name, device class,
a list of services and other technical information. When a slave wants to
connect to a master it must be discoverable. When the master sees a slave it
can establish a connection. If both units support it, it is possible to pair two
devices with each other. To support this feature the two devices must know
a shared passkey. When two devices are paired the connection between them
can be reestablished automatically. If they do not have a shared passkey the
connection must be set up manually each time.
By pressing a special sync button under the battery cover on the Wiimote,
it becomes discoverable for 20 seconds. Within this period the user must
manually pair the Wiimote with the computer. Alternatively one can hold
button 1 and 2 to make the Wiimote discoverable.

When a connection is established the data from the device can be read. To
read the data, a Bluetooth stack is needed. However, it is not all implemen-
tations that support all devices. The Bluetooth stack in Windows XP does
not support the Bluetooth dongle we have used in this project and another
one is therefore needed. The Bluetooth stack BlueSoleil [11] supports the
dongle and we have therefore used it.
Each device manufactured has a deviceID and vendorID. The deviceID iden-
tifies which device it is and the vendorID identifies the manufacturer. For the
Wiimote the deviceID is 0x0306 and the vendorID is 0x057e. This means
that all Wiimotes have this deviceID and vendorID, but no other devices
have the same combination. This of course makes it possible to read the
data from the correct device and not another random device found nearby.

When the connection between the Wiimote and the computer is established
through BlueSoleil it is possible to connect to the Wiimote as a HID device.
After this connection is established the communication to and from the Wi-
imote is done by reading and writing to different ports.
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5.2 Communicating with the Wiimote

As mentioned in the previous section, communication between the controller
and the computer is achieved using the HID standard. This enables one to
get an enumeration of the reports that the controller understands using a
HID descriptor block. Reports are conceptually equivalent to network ports
assigned to specific services since they specify what kind of data is being
transmitted and how it should be parsed. By specifying a report type and
some data, requests can be sent to the Wiimote. Through requests, different
states like reporting mode can be set. Also Wiimote features like LEDs and
rumble can be enabled or disabled. However, since communication goes both
ways, there are also report types to specify the format of the data which
the Wiimote returns. Table 1, based on [29, 30] lists all of the supported
report types. It should be noted that data report 0x30 and 0x33 are written
explicitly since these are relevant to our project.

Direction Report ID Payload Function
Output 0x11 1 LEDs and rumble
Output 0x12 2 Data reporting mode
Output 0x13 1 IR camera enable 1
Output 0x14 1 Speaker enable
Output 0x15 1 Controller status
Output 0x16 21 Write memory and register data
Output 0x17 6 Read memory and register data
Output 0x18 21 Speaker data
Output 0x19 1 Speaker mute
Output 0x1a 1 IR camera enable 2
Input 0x20 6 Status information
Input 0x21 21 Read memory and register data
Input 0x22 4 Write memory and register status
Input 0x30-0x3f 2-21 Data report modes
Input 0x30 2 Data report mode - Buttons only
Input 0x33 17 Data report mode - Buttons, motion-sensing, IR

Table 1: List of report types supported by the Wiimote, the expected size of the payload
in bytes and their function. Note that Output refers to packages that are sent from the
computer to the Wiimote while Input refers to packages from the Wiimote to the computer.

Most of the functions are less relevant to our project. However, one relevant
report is the one controlling the data reporting mode (0x12). Hereby it is
possible to control how and what data is being sent to the host.
The Wiimote has two different ways of transmitting information to the host.
As default the controller only sends data to the host when a state has
changed, like when a button is pressed. However, it can be set to send data
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continuous even if nothing has changed since the last report was sent. This
is done with a 10 ms interval, which means that 100 samples are sent per
second. This is also the upper bound for the non-continuous report mode.
The data reporting mode also controls what data is being sent from the con-
troller. Several modes are available. The simplest mode 0x30 only sends
button information while others send information regarding motion-sensing,
expansion port and IR. As shown in Table 1, the report mode 0x33 sends
button, motion-sensing and IR data. Since we are interested in receiving IR
data as often as possible, this mode combined with continuous reporting is
used.

Due to the way communication is done, there are a few things one should be
aware of. When receiving packages from the Wiimote, they are stored in a
buffer. If they are read at the same rate as they are received, this buffer can
be ignored since it will have no influence. However, if the packages are read
less frequently, the size of the buffer plays an important role. If the buffer
size is low, e.g. 1, then all but the most recent package at each sample point
will be dropped and hence never read. This causes loss of data. However, a
small buffer size ensures that little or no delay is introduced since it is always
the most recent package that is read. On the other hand if the buffer size
is large, the situation is quite opposite. Little or no data is lost, but large
delays might occur.
Since delays would make it hard to navigate precisely in a 3D world, it must
be avoided in our application. Therefore we use a small buffer of size 1. This
may result in a few lost packages at times, but it is not critical in our appli-
cation, since all packages contains the absolute position of the IR points as
discussed in section 5.2.2.
Another thing that should be noted is that the status of the rumble engine
is send as the least significant bit in every request report. Therefore it is
important to make sure that this bit is 0 at all times since we never use the
rumble feature.

5.2.1 Writing to Registers

As mentioned the Wiimote has some build in memory which can be read from
and written to directly. Additionally several peripherals like the IR camera
and speaker has a series of registers which are also available for reading and
writing. When one wants to read from the memory or registers a report of
the format shown in Figure 7(a) is send.
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Figure 7: The structure of the (a) read and (b) write request package.

The target specifies whether memory or registers should be read, the address
offset specifies the offset in the address space and read size specifies how
many bytes one desires to read. The actual data is returned through input
port 0x21. However, we will not go into further details with this since we
will not be using the read functionality.
The package format for writing data is very similar as can be seen in Figure
7(b). Besides the report ID, the primary difference is that at most 16 bytes
of data can be written at once. These are specified in the 16 last bytes of
the package.

5.2.2 Parsing Returned Data

As mentioned earlier, the amount of data returned depends on the selected
data reporting mode. In the simplest case, only button data is returned. As
specified in Table 1, this mode has report ID 0x30 and uses two bytes of
payload containing information about the button status. To identify itself,
the returned package also contains the data report type. The structure of
the package can be seen in Figure 8.

Figure 8: The structure of the data package with data report mode 0x30.

The first byte contains information about the direction buttons and the +
button as seen in Figure 2. The second byte contains information about the
rest of the buttons. Since each button is represented by a unique bitmask,
a buttons status can be found by making a logical and operation between
its bitmask and the button data. Since the buttons are of little interest to
us, the bitmasks are left out of the report. They are described in detail in
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[30, 29, 20].
The other data report mode of interest, i.e. 0x33, returns a payload of 17
bytes. Besides the button data, this report also contains 3 bytes of data from
the accelerometer and 12 bytes from the IR camera. The structure of the
package is show in Figure 9.

Figure 9: The structure of the data package with data report mode 0x33.

As one can see, byte 7 - 18 contains all the IR data. However the exact
format of the IR data is not directly determined by the data report mode.
Instead one of three different IR modes must be selected. These are:

• Basic mode (0x01) returns 10 bytes of data, corresponding to the x-
and y-coordinates of the four IR points that the camera can detect.
These are packed pair wise into groups of 5 bytes as illustrated in Fig-
ure 10(a).

• Extended mode (0x03) returns 12 bytes of data. Besides the coordi-
nates for each point, a rough size of each point is also sent. In this
mode, each point and its size is packed separately into four groups of
3 bytes each as illustrated in Figure 10(b).

• Full mode (0x05) returns 36 bytes of data, split up in to separate re-
ports containing 18 bytes each. Two additional elements are appended
to each group from the Extended mode; a bounding box in pixels of
the dot and intensity information about it. This is illustrated in Figure
10(c).

Since it is required that the space for IR data in the report fits the IR mode
exactly, Extended mode must be used with report type 0x30 described above.
To use Basic and Full mode the data report modes 0x36 and 0x3e must be
used respectively. However, we will not go into details with these two data
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report modes since we will be using Extended mode. Even though we have
no need for the size estimate, we have chosen Extended mode since the size
of the entire data package is smaller than when using Basic mode.
As mentioned, each point is transmitted as an object of 3 bytes when Extended

mode is used. The structure of the object is illustrated in Figure 10(b).

Figure 10: The structure of the object for IR modes (a) Basic, (b) Extended and (c)
Full.

The first byte of the object in Extended mode contains the 8 least significant
bits of the x-coordinate (X<7:0> in the figure) while the 8 least significant
bits of the y-coordinate are stored in the second byte. The third byte contains
the two most significant bits (bit 9 and 8) for the x- and y-coordinate at bit
position 7-6 and 5-4 respectively while bit 3-0 contains the size value of the
point. This means that information from the third byte must be appended
to the first and second byte in order to get the position of the point. While
this mix of information might seem a bit difficult to work with, it packs the
bit as tightly as possible and thus is used several places including the bytes
containing the accelerometer data.

5.2.3 Initialization of the IR camera

Once a connection is established with the controller, it is possible to initialize
the IR camera. First, it is necessary to specify the report mode, that is 0x33,
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and to enable continuous reporting since otherwise IR data is not reported.
This is done by sending a report for specifying data reporting mode. The
actual content of the package is shown in Figure 11(a).

Figure 11: The structure of the package to set report mode (a) and the packages to
enable IR sensing (b).

Afterwards the actual sensing of IR is enabled. This is done by sending two
packages that specifies continuous reporting for each camera port. These are
illustrated in Figure 11(b).
After enabling the camera, it is necessary to specify the IR data mode, that
is Extended mode in our case, and some sensitivity options that specify how
sensitive the camera is to objects. This is done in five steps by writing di-
rectly to the registers associated with the camera:

1. Write the value 0x08 to register 0xb00030.

2. Set the first part of the sensitivity options by writing sensitivity block
1 to the registers at 0xb00000.

3. Set the second part of the sensitivity options by writing sensitivity
block 2 to the registers at 0xb0001a.

4. Set the IR mode to Extended mode by writing the value 0x03 to the
register 0xb00033.

5. Write the value 0x08 to register 0xb00030 once more.

These steps are taken directly from [29]. It is noted that address space
0xb00000 - 0xb00033 is reserved for the IR camera. However there is no
information regarding the meaning of each register within the address space
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and the value used in step 1 and 5. This is due to the lack of official docu-
mentation. As stated, the second and third step specifies the sensitivity of
the IR camera. In [29], three different pairs of blocks are suggested. We have
chosen to use the 02 00 00 71 01 00 aa 00 64 and 63 03 for block 1 and
2 respectively since we have found at least one other driver implementation
using this pair [5]. The only information provided about the blocks is that
the last byte in each block determines the required intensity of the IR dots
to be accepted.

6 Implementation

In this section we will describe how we have implemented the core features
of our program and how it is structured. The source code can be found in
appendix C and on the included CD-ROM in the folder src. We have also
included API documentation of the library, which is available in the folder
docs.

We have developed a library called WiiIRLib. This handles everything re-
garding the Wiimote, including communication, using the data, etc. To
render the 3D world we have used OpenGL in which we draw the virtual
world with simple shapes, such as lines and squares. Since this is not a part
of the project, we will not describe it further.

The WiiIRLib is made as a header only implementation. The library makes it
possible to use the data from the Wiimote in an easy manner when used in a
3D application. The WiiIRLib consist of three classes, HIDBridge, Wiimote
and Logger.

The file HIDBridge.h contains the basic functionality which opens and closes
the connection and performs writes and reads to the Wiimote. To communi-
cate with the Wiimote as an HID device in C++ in Windows XP the three
files hidsdi.h, Setupapi.h and windows.h must be included. Setupapi.h

and windows.h comes for instance with Visual Studio, but hidsdi.h must
be installed separately and is packed in the Driver Development Kit [1].
Setupapi.h is needed because this contains general methods for using a
variety of devices like extern hard drives, cameras and HID devices, while
hidsdi.h manages everything regarding the HID communication. Finally
windows.h is needed to gain access to general methods for reading and writ-
ing data to the device.
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The first thing that must be done is to find the Wiimote as a device. In our
code this is done with the method open device(). Afterwards the Wiimote
must be registered in the program as an HID device. In our code this is done
with the method connect(). To show the entire code would be too much,
but here is an example of the essential elements:

1 HANDLE m_handle = NULL;
2
3 unsigned short device_id = 0x0306;
4 unsigned short vendor_id = 0x057E;
5 int device_index = 0;
6
7 for (;;) {
8 HIDD_ATTRIBUTES attrib;
9
10 if (!open_device(device_index) ||
11 !HidD_GetAttributes(m_handle, &attrib)) {
12 break;
13 }
14 if (attrib.ProductID == device_id &&
15 attrib.VendorID == vendor_id) {
16 break;
17 }
18 CloseHandle(m_handle);
19 ++device_index;
20 }

As can be seen in the code-example the connection is established by running
through all connected devices and connecting to the one that matches the
vendorID and deviceID of the Wiimote. Afterwards the Wiimote can be
accessed by the variable m handle.
After the connection is established it is possible to write to the Wiimote. In
our program this is done in the method write. Since it again would be to
much to show the entire code, only the essential parts are shown:

1 void write(unsigned const char * buffer, int num_bytes) {
2
3 DWORD bytes_written;
4 WriteFile(m_handle, buffer,num_bytes,
5 &bytes_written,&m_overlapped);
6 }

Essentially the writing is done by sending a buffer with a handle to the
method WriteFile, which is part of the underlying API to handle HID de-
vices. Since the operation can fail for a number of reasons our code checks if

27 of 81



Headtracking using a Wiimote 7 Results

anything was written and if the right number of bytes were written. Reading
from the Wiimote is done in much the same way.
As mentioned the class HIDBridge also contains methods for closing the con-
nection and so forth, but we will not describe them further here.

The second class Wiimote includes all the methods that make it possible to
change the state (e.g. switching the LEDs on and off) on the Wiimote and
get the processed data. All this is done using the methods in the HIDBridge

class. When using the library, it is therefore only methods from the Wiimote
class which must be used by the user. The following is an example of how
one could turn on the first LED on the Wiimote in the same fashion as is
done in the Wiimote class.

1 static const unsigned char OUTPUT_LED_1 = 0x10
2 static const unsigned char OUTPUT_CHANNEL_LED = 0x11;
3
4 m_output_buffer[0] = OUTPUT_CHANNEL_LED;
5 m_output_buffer[1] = OUTPUT_LED_1;
6 write(m_output_buffer,m_output_buffer_size);

The m output buffer is just a buffer. As can be seen, changing the state
of the Wiimote is simply done by writing the report type and the associated
action to the Wiimote as described in 5.2.

The most interesting method in Wiimote.h is retrieve data(), which reads
the latest data from the Wiimote and updates all the variables. It is therefore
important to call this method every time the data are used in a new pass, for
instance when a new frame is drawn. If this method is called with too short
an interval, an error will occur in reading the data. The method therefore
has a delay of 1 ms. Besides updating the position of the LEDs, the data
needed to set up the camera is also calculated.

The Logger class simply serves the purpose of logging calculated data, errors
and other convenient messages. The logged information is written to a file
specified by the user.

7 Results

This section consists of two main parts. The first part is the verification
where we try to verify that the used algorithms produce a reliable result
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and in general that our implementation behaves as expected. The second
part is the evaluation. Since two of the goals in the project were related to
comparing and evaluating our results, we need to do a qualitative evaluation.

7.1 Verification of the program

We have chosen not to construct unit tests for each method in the library
since this would yield little information about the actual correctness. Due
to the nature of our project, it is also difficult to compare our results with
“correct” data. Instead our strategy is to set up a number of situations in
controlled environments, thereby allowing us to test separate parts of our
implementation without one element influencing another. By examining the
precision for example in only one direction at a time, it becomes easier to
validate our estimate. Based on this strategy, we have chosen to separate
our validation into five different scenarios.

7.1.1 Precision of movement

We need to validate the precision of the measured coordinates. Before we
examine the precision during movement, we wish to measure the variation in
coordinates when the sensor bar is not moved. This is done to discover any
possible lack of precision in the camera. When a possible variation is known,
we can examine the precision during movement.
To examine the precision in a single direction, the sensor bar should only be
moved in that direction. This allows us to examine whether the coordinates
in the other directions are kept constant. Finally by knowing the origin, we
can perform a test where we return to check if the measured position for a
given sensor bar position is the same after movement.
It should be noted that the measured coordinates are those of the calculated
midpoint described in section 4.3.1 and thus not the coordinates for each of
the two detected points.
We have made a simplifying assumption in the approach above. We assume
that there will be no perspective distortion when the sensor bar is moved
away from the middle of camera. This is of course not true. The further
away from the centre of the camera, the smaller the distance between the
LEDs appear. Ideally we therefore need to move the sensor bar like a pendu-
lum and make sure the LEDs are always facing the camera in the Wiimote.
However, this will become very difficult to do precisely. Assuming that we
will not move the sensor bar too far away from the centre of the camera, the
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distortion will also be minimal.
Based on the discussion above, five separate tests should be made:

• No movement: Theoretically no changes should happen in coordinates,
but we expect slight variations due to inaccuracies in the returned data.
In the following tests this result is used to define the acceptable thresh-
old when no movement should occur.

• Movement in horizontal direction: Only the x-coordinate should change
while the y-coordinate and distance should remain the same.

• Movement in vertical direction: Only the y-coordinate should change
and the x-coordinate and distance should be static.

• Movement in depth: The measured distance should change while no
change in x- and y-coordinate should occur.

• Coordinate consistency: After a series of random motions with the
sensor bar we expect that when we return to the initial position, the
coordinates will be the same as before the sensor bar was moved.

To perform the first test, we simply placed the Wiimote and sensor bar on
the table, thereby assuring that both units were kept completely still. To
perform the three next tests, we made the setup shown at Figure 12.

Figure 12: The setup used to validate the precision of the movement in (a) horizontal
direction and (b) distance.
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As shown in (a), the sensor bar is placed on a table in front of the Wiimote.
This makes movement in only one direction easier since no vertical movement
can happen. Also, following a measured line helps to insure that no variation
happens in distance for the first two tests. To perform the vertical test, we
simply place the Wiimote on the side, which allows us to use the same setup.
For the distance test shown in (b), we follow two straight lines to ensure that
only distance is changed. The setup for the last test is quite similar except
that we move the sensor bar freely before returning it to the initial, marked
position.

Results
The result of the first test is seen in Figure 13 which shows the reported
value of the x- and y-coordinate as well as the distance.The x-axis specifies
the samples over time, while the y-axis has no unit since it simply is the
data returned from the Wiimote. It should be noted that the distance on all
graphs has been scaled to fit within them.
While we expected a little variation in values, it is minimal. In general there
are very small variations in the y-coordinate during the whole test. However
for the x-coordinate and distance the value is constant with a few exceptions.
The largest deviation from the mean value was 0.070%, 0.17% and 0.20% for
the x-coordinate, y-coordinate and distance respectively. These values are
very small. It is therefore safe to assume that any noteworthy variation in
the following experiments is not due to lack of camera precision.

In the following test; movement in the x-direction, the result was overall as
expected as seen in Figure 14. There is a fairly constant increase in the x-
coordinate, while the y-coordinate and distance are kept fairly constant. The
almost linear increase is to be expected since we tried to move the sensor bar
with a constant speed.
The small variations are due to our inability to keep the distance completely
constant. Despite the effort to follow a straight line, it is difficult to keep the
sensor bar perfectly calm during movement.
It is noted that especially the distance has higher values around 200 − 250
samples. This is due to the perspective distortion discussed earlier. As ar-
gued it has little influence on the values, so our assumption about ignoring
the distortion was valid.

The test for movement in the y-direction show results very similar to those
described above as seen in Figure 15. As expected the x-coordinate and
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Figure 13: The measured variation in the x-coordinate, y-coordinate and distance.

Figure 14: The measured data when only movement in the x-direction occur.

distance are kept fairly constant, while the y-coordinate decreases almost
linear. The primary difference is that the distance varied more during this
experiment. An explanation to this could be that the vertical resolution of
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the camera is lower than the horizontal. This would make variations in the
movement appear more clearly.

Figure 15: The measured data when only movement in the y-direction occur.

The next test is the distance test. As seen from Figure 16, the result is
somewhat different from what we expected. The x-coordinate is close to
constant and the distance changes almost linear as anticipated. However the
y-coordinate obviously increases over time. After another experiment, we
learned that this is due to the fact that the camera is not placed parallel
with the front of the Wiimote. Instead it points slightly downwards. This
results in an increasing y-coordinate for LEDs placed in the centre of the
Wiimote front, when moving the sensor bar backwards.

For the final test, coordinate consistency, the results can be seen in figure 17.
As expected the coordinates of the sensor bar are very close before and after
the free movement was performed. The measured deviation was 0.095% in the
x-coordinate while the y-coordinate was exactly the same. This is absolutely
acceptable and we believe the small variations are simply due to us not be-
ing able to place the sensor bar on exactly the same spot after the movement.

Overall all five tests returned positive results. There was very little variation
when the sensor bar was kept still. Furthermore the values changed as ex-
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Figure 16: The measured data when only the distance is changed.

Figure 17: The measured data when the sensor bar is moved freely and returned to the
initial position.
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pected when performing horizontal and vertical movement. Assuming that
we succeeded in moving the sensor bar at a constant speed, the change was
also linear. Despite the increasing y-coordinate in the fourth test, we consider
it successful as well since the problem was explained. Also, the x-coordinate
and distance were as expected. Finally we showed that after free movement,
the coordinates were the same as before the sensor bar was moved, when
returning to the initial position.

7.1.2 Rotation of the sensor bar

As described in section 4.3.1, we depend on the distance between the two
points to estimate the distance of the user. However, this can introduce the
problem described in section 4.3.1. If the sensor bar is not facing the Wi-
imote, the distance between the points becomes smaller. This could happen
if the user turns her head away from the monitor. While we speculated that
we could ignore this problem as long as the user almost faces the screen, we
still need to evaluate the robustness of our solution at thus examine how big
a problem it can pose.

Figure 18: The prediction of the rotation of the sensor bar.

Since we have done nothing to prevent this problem, we expect that the dis-
tance should increase quite a lot as the sensor bar is turned. As mentioned
earlier the distance is calculated based on the distance between the LEDs.
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Since the sensor bar is rotated the function to expect is therefore 1
sin(θ)

where
θ is the angle from 0 to 60. This function can be seen on Figure 18. Based
on the graph, we expect little error in the distance when the sensor bar is
close to facing the Wiimote. However, when it is turned more than around
25 degrees, the distance will probably be so erroneous that the estimate is
useless.

Figure 19: The setup used to examine the error in distance when the sensor bar is
rotated.

The setup we used for this experiment is seen in Figure 19. As with the
other experiments, it is necessary to isolate the motion we wish to examine.
Therefore we must keep a constant distance between the Wiimote and sensor
bar. Since we also want to have as little variation as possible in the x- and
y-coordinates, we place the sensor bar and Wiimote on a table and rotate
the sensor bar around its own centre.

Results
The result of the experiment can be seen on Figure 20. The first thing to note
is, that the x- and y-coordinates are almost completely still. The variation
on the x and y is 1.4% and 2.5% respectively which is acceptable since we
were unable to keep the centre perfectly still while rotating. The measured
distance rises as expected and looks like Figure 18. When the angle became
above 65-70 degrees the Wiimote was unable to detect both LEDs and the
distance was therefore completely wrong. We have chosen not to show this
on the figure since the large value would make it impossible to see anything.
Overall the result of the test can be seen as a verification of our expectations
regarding rotation of the sensor bar.
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Figure 20: The result of the rotation of the sensor bar.

7.1.3 Robustness of tracking

In section 4.3.3 some of the problems regarding the use of IR were discussed.
The problem is what to do if the sensor bar is moved outside the visibility
range of the camera or the line of sight is obstructed. In both cases we have
tried to handle the situation by keeping the last known valid position until
reliable data is available again, as described in section 4.3.3. We then try to
make a smooth transition between the two positions.

To verify the robustness of our approach, we have set up two test cases.
Opposite to the two previous scenarios, we are not interested in isolating a
specific motion. Instead we are interested in the robustness in a general usage
scenario. Therefore we have chosen a setup as it is intended to be used. The
Wiimote is placed beneath the monitor and the sensor bar is moved freely
around, following the user. The setup can be seen in Figure 21.

In the first case, we move the sensor bar outside the visibility field of the
Wiimote as shown in Figure 21(a). When entering the field again, we vary
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Figure 21: The setup used to examine the robustness when a direct line between the
camera and the IR LEDs are lost (a) because the Wiimote is outside the visible field and
(b) because of an obstruction.

the entry position so that it differs significantly from the exit point at times.
For the second case, we obstruct the line of sight simply by putting a solid
object in front of the sensor bar as in Figure 21(b). We then move the sensor
bar in different directions before removing the occlusion. By this we simulate
minor occlusions like a person passing between the user and the camera and
more permanent occlusions like furniture and similar.
In both cases we expect our solution to be robust to the extent that we sim-
ply freeze the movement while no new information is available and resume
as soon as valid data arrives. Again it is a great advantage that we receive
absolute coordinates, as it allows us to quickly change the view according to
the position of the user.

Results
In the first experiment where the sensor bar was moved outside of the vis-
ibility field, the screen froze as expected. When the sensor bar was moved
within sight again, the screen changed perspective to the new position of the
user. In section 4.2.2 we said that the transition between the old and new
perspective should take around one second. We found, that a time around
half a second was more fitting, because the interaction seemed more respon-
sive, but without the perspective jumping from one position to another.
In the second experiment where something passed by the LEDs shortly the
result was also as expected. The screen froze for a moment and then con-
tinued afterwards. However, a very small jittering could be seen. We found
that the reason for this was, that when the object moving in front of the
LEDs only covered for instance half of one LED, the detected position of the
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LED was moved slightly. Overall this was almost unnoticeable if one was not
looking for it.
For both tests the results of the experiments were positive and as expected,
which means that the measures we have taken to make our application more
robust is working as intended.

7.1.4 Responsiveness

Since our solution should be used for real time interaction, it is important
that the response time from an action is performed to the result is shown on
the monitor is low. Furthermore one of the primary arguments for doing this
kind of interaction was realism, and this will disappear if the response time
becomes noticeable.
It is difficult to measure the response time, assuming that it is fractions of a
second. If we simply try to measure it with a stopwatch, the result will be
inaccurate due to our own reaction time. Therefore we must use a different
approach. A possibility is to use a camera recorder. By filming both the
sensor bar and the content on the screen, we can capture both elements at
once. We can then analyse the captured movie and count the frames from the
sensor bar is moved to the content of the screen is changed. With a known
frame rate of the movie, we can then calculate the delay in milliseconds.
While it will work in theory, it requires a video camera with a high time and
spatial resolution to obtain a high precision. If the resolution is too low, it
becomes difficult to determine when the content on the monitor changes.
In real time interaction, a low response time is key to ensure smooth oper-
ation. Therefore the response time should be below 100 milliseconds. Since
our code is fairly light weighted, we expect to be able to do this. To investi-
gate this further, we also include responsiveness as one of the rating criteria
during the user evaluation, as described in section 7.2.2.
It should be noted that due to the intentional 1 millisecond delay described
in section 6 a slight delay must necessarily occur. However a single millisec-
ond will not be noticeable during interaction.

Results
We made the experiment, where we recorded our movement of the sensor
bar and the screen. The camera we used has a frame rate of 15 which means
that we can at most get a precision of 7 milliseconds. The result after several
experiments is that the response time of our application is 400 milliseconds.
Unfortunately this is far too high. We have tried to examine our code to
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find what is causing the delay. At first we removed all unnecessary elements.
This did not result in a lower response time. Unfortunately we have not been
able to locate the exact source of the delay.
Overall we must conclude that the response time is far too high and must be
improved before the application can be used properly.

7.1.5 High frequency noise

The purpose of the final scenario is to examine how sensitive our solution is
to high frequency noise. We can test the sensitiveness to this problem simply
by holding the sensor bar and on purpose make a series of small movements
that ideally should be ignored and therefore have no influence on the per-
spective in the 3D world. However we might end up exaggerating when using
this approach. Therefore we will also try simply to put the sensor bar on the
head and stand still as one would do in a natural situation. That way we
can examine if the noise poses an actual problem during normal usage.
As described in section 4.3.4 we only implemented the simple noise reduc-
tion method where we interpolate between the new position of the user and
the previous position. Therefore we expect that most of the noise is visible
and probably intolerable in the first of the two experiments. However, when
placing the sensor bar on the head, we expect less significant problems, since
the head can be kept relatively calm in most cases.

Results
In the first test the result was as expected. The jittering of the screen was
rather obvious and far too big of a problem to simply overlook. The noise
was such a big problem, that the application actually became unusable.
The result for the second experiment was not quite as expected. The noise
was less noticeable than in the first test, but it was still visible. The noise
does not pose such a big problem, that the application becomes unusable
because of it, but it is annoying to look at when the screen is jittering a tiny
bit almost all the time.
Overall the result of these two tests showed, that noise is quite a big problem
if nothing is done to prevent it.
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7.2 Evaluation

As mentioned, we will do a qualitative evaluation of our result. This serves
two goals: To evaluate whether we have been able to imitate Johnny Lee’s
results and to examine if our solution is suitable for navigation in a 3D world.
In the first part we ourselves will compare the result demonstrated by Lee
in the video [15] with our solution and comment on similarities and differ-
ences. We will also give a general evaluation of the result. This is described
in section 7.2.1. In the second part, found in section 7.2.2 we will have users
evaluate our solution and comment on it.
To illustrate our solution, a video demonstrating the solution in action, has
been included on the CD-ROM in the folder video. The video was recorded
by placing a camera recorder on top of the sensor bar and move it around as
a person would.

7.2.1 Comparison with the solution of Johnny Lee

As mentioned above, we will compare our solution to the video [15]. While
this will not allow us to do an exact comparison between the solution of
Johnny Lee and our own, we have chosen this approach to limit the extent
of the project. Since our goal is to examine whether we are able to imitate
his solution, there is no need to do a user experiment using his solution, only
to identify the features illustrated in the video and to compare them to our
solution.
This approach raises a question. To use the video for comparison, it is im-
portant that we can trust the content of it. As the video is made by Johnny
Lee himself, we can rule out the possibility that some random person has
used his program and then tampered with the results. However there is no
guarantee that the result presented by Johnny Lee is correct. To investigate
this we ran the application and mimicked the movement that he does in the
video to assure that we saw the same results as presented in the video. As
this turned out to be the case for everything demonstrated in the video, we
see no problem in accepting it as trustworthy and thus useable for our com-
parison.

In general, the video demonstrates the features described in section 4.1, that
is adaption of the visible field according to distance and angle. Besides just
changing the visible field, these adaptations allow him to look behind ob-
jects and even go behind some of them. Also, another interesting feature is
pointed out in the video. At times, the foremost target seems to be floating
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in front of the screen, giving the illusion that it reaches out into the real world.

To evaluate whether we have been able to achieve these features, we have
constructed a 3D scenario much similar to the one used by Johnny Lee. It
features a number of floating targets contained within a three dimensional
room. A screenshot of the scenario can be seen in Figure 22. As mentioned
in section 6 it is rendered using OpenGL.

Figure 22: The 3D scenario used in the evaluation of our solution against Johnny Lee’s
solution.

Results
Overall we found that the solution of Lee and ours had many similarities.
This is the case because we originally were inspired be his solution to make
this project. However, when comparing his solution to ours we found some
elements which were different. In this section we will describe the differences
along with a problem we found in his and our solution.

In section 7.1.4 we found that the response time of our solution was 400 mil-
liseconds which was too high. In the solution of Lee the response to the users
movement was almost instantly and the delay actually unnoticeable. This
is of course far better than our solution. However, the low response time is
not just because the work of Lee, but because the library he uses for reading
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data from the Wiimote is much faster than our method.

When moving around with the sensor bar the solution of Lee is affected by
high frequency noise as ours also is, but in a smaller manner. Lee does noth-
ing to prevent this in his code, but the fact that there is no delay also means
that he can update the position of the user more often and thereby reduce
the problem of the high frequency noise.

When one or both of the LEDs are undetected the solution of Lee freezes the
perspective to the last known. When both LEDs are detected again the per-
spective is immediately updated to the new position, which often results in
the screen making a rather large jump. As we have mentioned several times
our solution makes a transition between them. Regarding this, we think our
solution is better than Lees.

A problem which is inherent to the approach of making the monitor like a
window is that when the user moves closer to the screen more content be-
comes visible as illustrated in Figure 5, section 4.1.1. This is the case with
a normal window and also the case with both the solution of Lee and ours.
The problem is that the size of the monitor is fixed and when more content
has to be shown, each object has to fill less on the monitor, the closer the
user gets to the screen. Because this is a problem inherent when trying to
use the monitor as a window, there is no obvious solution.

Regarding some elements the solution of Lee is better than ours, while with
other elements it is the other way around. However, overall we must conclude
that the solution of Lee performs better than ours. This is especially the case
because the delay in our solution is far too high and the high frequency noise
is a bigger problem.

7.2.2 User evaluation

In order to get others to evaluate if our solution is suitable for 3D navigation,
we have to set up a scenario that they should navigate through. However,
we can not just ask participants to look around and tell how they feel since
this would yield little insight. Therefore we will design a task that should
be solved. This will make the participants engage actively in the navigation
and not just “play around”. Afterwards we will ask them to evaluate the
navigation based on 5 different criteria. These are ease of use, fun to use,
intuitiveness, level of realism and responsiveness. They will also be asked to
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comment on the experience. The questionnaire used can be seen in appendix
A.

The task scenario is set in a simple 3D world very similar to the one used
in the first part of the evaluation. A screenshot can be seen in Figure 23.
The participants must then look around and find a number of hidden squares
behind the targets. Since they are behind the targets, they are not visible
from the initial point of view. The user must therefore look around and move
to find the squares.

Figure 23: The 3D scenario used in the evaluation of our solution using participants.

In general many considerations should be done when designing a complete
experiment and thus it easily becomes an entire project. Since planning of
the experiment is not the primary focus in this project, we will only briefly
describe the considerations done during the construction of the experiment.
This limitation also means that we are not considering several design issues
like methods for selecting users and making sure that they have the same
preferences.
As mentioned, we have chosen to let the participants perform a task instead
of just playing around. This is done since it is known that participants tend
to loose interest very fast when they are not performing specific tasks [22].
The rating is done using a questionnaire based on a 6-point explicit numeric
scale as described in [22]. We have chosen scales since it makes interpreta-
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tion of the data easy. It also helps avoid bias due to leading questions. The
reason for choosing a 6-point scale is to avoid users giving completely neutral
answers.
Finally it should be noted that we try to be as neutral as possible during
the experiment and thus interfere as little as possible. This is done to avoid
bias due to us affecting the users. Because of that, we only interfere if the
participants are having significant problems understanding the navigation or
finding a certain mark.
We conducted our experiment with three participants. Two of them were
females aged 20 and 57 and the male was 20. All three were regular users of
computers and different kinds of interfaces, but none of them had previous
experience with VR like interfaces.

Results
The answers to the questionnaires can be seen in appendix B. Since the inter-
views were performed in Danish, the text answers are our notes about what
the users said.
A summery of the scores from the rating based part is shown in Table 2. In
general the score is above average, with four out of five statements receiv-
ing an average score around 4. The only statement getting a higher score
is the intuitiveness, with an average of 5.0. Overall there are quite some
variations in the score given between the users, which makes it difficult to
conclude much. However, an interesting observation is that the average score
on responsiveness is 4. One would have expected worse ratings considering
the results found during the verification. However, it seems to be acceptable
according to the users.

Statement User 1 User 2 User 3 Average
The interface was easy to use 4 2 6 4
The interface was fun to use 2 5 6 4.3
The interface was intuitive 5 6 4 5
The perspective was like looking through a
window

4 3 6 4.3

The program responded immediately 4 3 5 4

Table 2: The scores given during the rating of the five statements. Included is also the
average score for each statement.

When taking the answers to the three questions into account, a much more
general opinion about our solution is seen: The idea of using the head to
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change the perspective is good. It can add realism and fun to the application
and would probably work well in a game. One user even speculated that
this approach could improve working methods and help avoid problems like
mouse-related injuries. The users also found the form of interaction intuitive
which also can be seen from the ratings.

Despite the potential there were a number of serious issues, stopping it from
being really useable, which also shows by the fact that two of the users pre-
ferred a conventional mouse. One of the reasons for this was the delays
experienced when moving fast. Another problem was the high sensitivity.
Even very small motions were transferred to the screen. This conforms very
well with the observations about the high frequency noise problems discussed
during the verification.
Another major problem mentioned was the instability. Because it is fairly
easy to move the sensor bar outside the range of the Wiimote, the application
easily locks. The primary reason for this is the relatively small field of view
of the camera, especially when standing close to the Wiimote. This problem
made one of the users report that the application did not run smoothly and
he thought this was due to a low frame rate.
Finally a common problem was that there is little freedom when looking and
moving around. Two of the users felt locked and unable to move as they
would like at times. While one user was unable to move the desired amount
sideways, another felt constrained in up- and downward movement.
It is noteworthy that none of the participants commented on the problem
with the perspective described in section 7.2.1 when moving closer and far-
ther from the screen.

8 Reflections

During the project, an interesting announcement on the game related news
site Joystiq [12] came to our attention. At the Game Developers Conference
(GDC) 2008 [6], it was revealed that the game Boom Blox

TM
[7] for the Wii

console will feature the possibility to control the camera using headtracking
in the same way as we have done, by using a Wiimote and some IR LEDs.
However it was pointed out that the feature should be considered an Easter
egg due to the requirement of a ”do-it-yourself IR LED headset” and thus is
not an official game feature. Despite that it is not official, it shows that the
game industry has also taken interest in the headtracking possibilities of the
Wiimote and that the feature could become part of games at some point.
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Several other interesting things have happened in the area of VR like inter-
action in games during the project. An interesting piece of hardware also
shown at GDC 2008 was the 3DV Systems ZCam

TM
[28]. Basically it is a

camera with a specialized chip, capable of determining the depth of objects
in real time using infrared technology, which is not just capable of detecting
IR LEDs, but IR light in general. This means that it can extract the shape of
a person standing in front of the camera and map her movement directly to
a game. At GDC this was illustrated using a boxing game where the player
simply punches into the air and this action is mapped directly into the game
where the character then punches. To avoid a punch from the opponent, one
simply dodges in the real world and the game character then follows. From
a video of the demonstration [9], it seems very convincing and is a huge leap
towards VR like game experiences. Although this does not directly aim at
headtracking, it is not unlikely that the technology can be adapted to achieve
results similar to the ones we have presented due to the high resolution depth
map it can produce.
Finally another noteworthy piece of hardware announced during our project
is the Neural Impulse Actuator (NIA) [10]. It is a device that allows you to
control e.g. games using only your mind. It works by measuring several ele-
ments from a headband, including activities of the brain, nervous system and
muscles [18]. These data are then sent to the PC for interpretation. While
this seemingly has little with games to do, it has been demonstrated how the
game Unreal Tournament III

TM
[8] can be controlled using the device [18].

While it might not directly provide a VR like game experience, it opens for
a whole new way of game interaction. One could also imagine that it could
enable the user to change the visible area in a 3D world according to her
position like we do, but without using actual headtracking.

The ideas behind the above mentioned products are not new and similar
products have been shown previously. The interesting aspect is that these
solutions are at a much lower price than those previously shown. The price
actually is so low that we can expect to see them in the mass market in
the near future. Therefore it is necessary to discuss if our solution has the
potential to be used on the mass market.
The setup needed to use this headtracking is a Wiimote and some form of IR
LEDs. As we already mentioned in section in the introduction, the price of
the Wiimote is so low that is can be used on a mass market which it already
is. In our setup we used the sensor bar from the Wii as IR LEDs, but this
is not a good solution since the user has to hold it on her head. Instead the
LEDs should be mounted on the side of a pair of glasses. This way the user
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can move freely around. We tried to construct a small device with the LEDs
on. It was rather easy to construct and only cost a few dollars. The problem
with this is off course that the user does not want to do this and the tracking
was not as robust as when using the sensor bar. It did however show that it
is possible to produce a solution at a very low price.
Overall we learned that using the Wiimote to perform headtracking is pos-
sible and could be used on the mass market. The user evaluation showed
that the users found the interface fun to use. However, it also showed that
our solution still have some issues which should be addressed and further
development is needed before the solution is final.

8.1 Other applications

During the project we have focused on using the headtracking results for
VR like interaction in 3D worlds. However, there exist other applications of
this type of headtracking. In [17] they compare different techniques for ob-
ject selection in augmented reality. Here one of the problems that should be
overcome is when objects are outside the field of view of the user. Different
approaches are suggested, but a possibility not suggested would be to adapt
our solution so that when the user turns her head, other objects become
visible. Since a Wiimote is already used in one of the techniques described,
the necessary type of equipment is already in use.

While augmented reality is still primarily of interest in research, there exist
other, more widely used applications. Headtracking does not only have to be
used in 3D applications. Some of the most common content in programs is
2D, like text and images. Many of these programs contain more information
than is visible on a single screen. This means that a lot of scrolling or zoom-
ing is often necessary. Just take a 20 page text document or architectural
drawings as examples. Instead of having to scroll using a mouse, our solution
could be used to move the visible area. That way the user gets more freedom
since this task is moved from the mouse which is not always active, to the
head. An architect would for instance be able to move to the left part of the
blueprint, simply by turning her head to the left.
While our current approach is not optimal for this kind of usage, it could
be made so with only a few changes. By expecting the user to be in a fixed
position we could interpret changes in coordinates as rotation of the head
instead of movement of the user. That way the user could sit in front of the
screen and turn her head instead of moving around.
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9 Conclusion

The purpose of this project was to mimic the work of Johnny Lee and im-
plement a solution for performing headtracking using the Wiimote. The goal
of the headtracking was to allow users to interact with a 3D world and give
much of the same feeling as when looking through a window.
In this paper we described the Wiimote and the how communication with it
is performed as well as how the returned data can be used to navigate in a
3D world. We also made an analysis of the problem as well as of the solution
of Johnny Lee. Here we discussed his approach and aspects that could be
improved; namely robustness and noise reduction. Based on the analysis, we
described our solution and made suggestions to improve the robustness and
noise problems.
Afterwards we performed verification and an evaluation of our solution. The
verification generally went as expected, showing the precision and robustness
we had foreseen. However, it turned out that high frequency noise is a larger
problem than expected. Also the responsiveness was significantly worse than
anticipated.
In the evaluation, we compared our solution to the one of Johnny Lee. Gen-
erally the two solutions acted similar, but our solution used interpolation to
improve the robustness which the solution of Lee did not. Overall though,
his solution performed better than ours, especially regarding responsiveness
and tolerance to high frequency noise.
The user study showed that the presented idea works well and could po-
tentially be suitable for interaction in a 3D world. The users found the
navigation intuitive and it has high potential. Despite the high potential our
solution suffers from a few problems such as high response time and high fre-
quency noise. Before our solution can be used for actual interaction further
work is therefore needed.

10 Future work

There are some relevant areas of this project that we have not had time to ex-
plore thoroughly. One of these is the implementation of high frequency noise
reduction discussed in section 4.3.4. As revealed by the verification experi-
ments, our solution is relatively sensitive to high frequency noise, especially
if the head is not kept calm. Therefore it would be interesting to imple-
ment both the discussed prediction of the user’s movement and the Gaussian
smoothening of the samples. That would allow us to examine which approach
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is the most appropriate and whether the noise can be removed without sac-
rificing responsiveness.

Another interesting aspect would be to add two-player support on e.g. a
split screen. This is relevant since many games for consoles like the Wii have
multiplayer support on the same monitor.
The most direct approach is to connect two different Wiimotes and let each
track a sensor bar. However this would require some way to determine which
sensor bar belongs to which Wiimote. While this can be specified by the
user before entering a game, it becomes more complicated if both sensor
bars disappear from the visible field and then returns. Another drawback
is the requirement of two Wiimotes which means that the solution becomes
somewhat more expensive.
Instead one can take advantage of the ability of the Wiimote to track four
points at once. That will require only an extra sensor bar which is somewhat
cheaper. However the problem of tracking pairs of points, especially if they
are not visible for periods becomes more complex. Besides being more diffi-
cult to determine which points are associated to which user, one must expect
that obstruction will happen more frequently since users might get in each
others way. This implies that just locking the view in case of obstructions
might not be acceptable and a better solution is required.

Finally it would be interesting to do a more thorough user evaluation. As
mentioned in section 7.2.2, we have ignored several aspects in empirical re-
search to limit the extent of the project. Performing a more thorough eval-
uation would make it easier for others to compare results. Also an obvious
possibility is to include other interaction methods in the evaluation. This
would allow us to examine if our solution actually provides a better form of
interaction than other devices like game controllers, mice and similar regard-
ing both qualitative and quantitative aspects.
Another interesting aspect would be to examine how suited our solution is
for several hours of interaction. Since it is not uncommon to e.g. play a game
for two or three hours in a row, this is relevant. While our solution might
be realistic, one can imagine that it has higher physical requirements of the
user since she must constantly be moving around. This is not the case for
conventional controllers and thus is worth examining.
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A Questionnaire

Please rate the experience with the interface by the following criteria on a
scale from 1 to 6 by circling the appropriate value. 1 is strongly disagree and
6 is strongly agree.

I found that the interface was easy to use:

Strongly disagree 1 2 3 4 5 6 Strongly agree

I found that the interface was fun to use:

Strongly disagree 1 2 3 4 5 6 Strongly agree

I found that the interface was intuitive:

Strongly disagree 1 2 3 4 5 6 Strongly agree

I found that the perspective was like looking through a window:

Strongly disagree 1 2 3 4 5 6 Strongly agree

I found that the interface responded immediately:

Strongly disagree 1 2 3 4 5 6 Strongly agree
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Do you prefer this over a normal mouse-interface? Why /why not?

What problems did you notice?

Further comments:
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B Questionnaire Results

User 1

Please rate the experience with the interface by the following criteria on a
scale from 1 to 6 by circling the appropriate value. 1 is strongly disagree and
6 is strongly agree.

I found that the interface was easy to use:

Strongly disagree 1 2 3 4 5 6 Strongly agree

I found that the interface was fun to use:

Strongly disagree 1 2 3 4 5 6 Strongly agree

I found that the interface was intuitive:

Strongly disagree 1 2 3 4 5 6 Strongly agree

I found that the perspective was like looking through a window:

Strongly disagree 1 2 3 4 5 6 Strongly agree

I found that the interface responded immediately:

Strongly disagree 1 2 3 4 5 6 Strongly agree

55 of 81



Headtracking using a Wiimote B Questionnaire Results

Do you prefer this over a normal mouse-interface? Why /why not?

This interaction is not preferred. This due to the delay and the fact that

it does not always reaction as expected.

What problems did you notice?

It does not always move in the desired directions as expected. The boxes

are not always following when moving in distance.

Further comments:
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User 2

Please rate the experience with the interface by the following criteria on a
scale from 1 to 6 by circling the appropriate value. 1 is strongly disagree and
6 is strongly agree.

I found that the interface was easy to use:

Strongly disagree 1 2 3 4 5 6 Strongly agree

I found that the interface was fun to use:

Strongly disagree 1 2 3 4 5 6 Strongly agree

I found that the interface was intuitive:

Strongly disagree 1 2 3 4 5 6 Strongly agree

I found that the perspective was like looking through a window:

Strongly disagree 1 2 3 4 5 6 Strongly agree

I found that the interface responded immediately:

Strongly disagree 1 2 3 4 5 6 Strongly agree
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Do you prefer this over a normal mouse-interface? Why /why not?

Mouse interaction is preferred.

What problems did you notice?

The sensitivity was too high. The possibilities to move sideways are limited.

It seemed not to run smooth, due to a low frame rate. It is unhandy with

the sensor bar on the head.

Further comments:

The responsiveness rating applies when the perspective does not lock.

There was some delay.
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User 3

Please rate the experience with the interface by the following criteria on a
scale from 1 to 6 by circling the appropriate value. 1 is strongly disagree and
6 is strongly agree.

I found that the interface was easy to use:

Strongly disagree 1 2 3 4 5 6 Strongly agree

I found that the interface was fun to use:

Strongly disagree 1 2 3 4 5 6 Strongly agree

I found that the interface was intuitive:

Strongly disagree 1 2 3 4 5 6 Strongly agree

I found that the perspective was like looking through a window:

Strongly disagree 1 2 3 4 5 6 Strongly agree

I found that the interface responded immediately:

Strongly disagree 1 2 3 4 5 6 Strongly agree
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Do you prefer this over a normal mouse-interface? Why /why not?

This interaction is better than with a mouse, but it will probably require

some practice.

What problems did you notice?

It was annoying that it was not possible to see the hidden squares furthest

away.

Further comments:

Perhaps it will improve the methods for working over a mouse. You could

possibly avoid mouse-related injuries. In games one will probably be able

to react faster since the coordination between eye and hand is avoided.
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C Source code

C.1 HIDBridge.h

1 #ifndef WIIIRLIB HIDBRIDGE H
2 #define WIIIRLIB HIDBRIDGE H
3
4 #include <windows . h>
5
6 extern ”C” {
7 #inc lude <h id sd i . h>
8 #inc lude <Setupapi . h>
9 }

10
11 #pragma comment ( l i b , ” se tupap i . l i b ” )
12 #pragma comment ( l i b , ” hid . l i b ” )
13
14
15 namespace WiiIRLib {
16
17 /∗∗
18 ∗ HIDBridge manages the connect ion to a HID dev i ce l i k e the Wiimote .
19 ∗ The c l a s s i s based on cWiiMote 0.3 which i s a v a i l a b l e at
20 ∗ h t t p ://www. ecando . i t /cwmdown . html
21 ∗/
22 class HIDBridge {
23
24
25 private :
26 HANDLE m handle ;
27 HANDLE m event ;
28 OVERLAPPED m overlapped ;
29 bool m connected ;
30
31
32 public :
33 HIDBridge ( ) : m connected ( fa l se ) , m handle (NULL) , m event (NULL) {} ;
34
35
36
37 /∗∗
38 ∗ Upon des t ruc t i on , the HIDBridge c l o s e s the connect ion .
39 ∗/
40 ˜HIDBridge ( ) {
41
42 i f ( m connected ) {
43 d i s connec t ( ) ;
44 }
45 }
46
47
48
49 /∗∗
50 ∗ d i sconnec t c l o s e s the connect ion to the HID dev i ce .
51 ∗ @return − True i f the connect ion was c losed , f a l s e o therwi se .
52 ∗/
53 bool d i s connec t ( ) {
54
55 bool su c c e s s = fa l se ;
56 i f ( m connected ) {
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57 su c c e s s = ( CloseHandle ( m handle ) && CloseHandle ( m event ) ) ;
58 m connected = fa l se ;
59 }
60 return su c c e s s ;
61 }
62
63
64
65 /∗∗
66 ∗ connect e s a b i l i s h e s a connect ion to a HID dev i ce with the s p e c i f i e d
67 ∗ dev i ce and vendor ID . I f nothing i s s p e c i f i e d , the IDs fo r the
68 ∗ Wiimote w i l l be used .
69 ∗ @param de v i c e i d − The ID of the dev i ce .
70 ∗ @param vendor id − The ID of the vendor .
71 ∗ @param dev i c e s − Sp e c i f i e s the number o f dev i c e s to be found .
72 ∗ @return − True i f a connect ion was e s t a b i l i s h e d , f a l s e o therwi se .
73 ∗/
74 bool connect (unsigned short d ev i c e i d = 0x0306 ,
75 unsigned short vendor id = 0x057e , int dev i c e s = 0) {
76
77 i f ( m connected ) {
78 i f ( ! d i s connec t ( ) ) {
79 return fa l se ;
80 }
81 }
82
83 bool su c c e s s = fa l se ;
84 int dev i c e i ndex = 0 ;
85 int match ing dev ice s found = 0 ;
86
87 for ( ; ; ) {
88 // Go through a l l HID dev i c e s u n t i l a matching dev i ce i s found .
89 HIDD ATTRIBUTES a t t r i b ;
90
91 i f ( ! open dev ice ( dev i c e i ndex ) | |
92 ! HidD GetAttributes ( m handle , &a t t r i b ) ) {
93 break ;
94 }
95 i f ( a t t r i b . ProductID == dev i c e i d && a t t r i b . VendorID == vendor id ) {
96 // The de s i r ed dev i ce has been found .
97 i f ( match ing dev ice s found == dev i c e s ) {
98 m connected = true ;
99 break ;

100 }
101 match ing dev ice s found++;
102 }
103 CloseHandle ( m handle ) ;
104 dev i c e i ndex++;
105 }
106 return m connected ;
107 }
108
109
110
111 /∗∗
112 ∗ i s connec t ed re turns the connect ion s t a t u s .
113 ∗ @return − True i f connected , f a l s e o therwi se .
114 ∗/
115 bool i s c onne c t ed ( ) const {
116
117 return m connected ;
118 }
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119
120
121
122 /∗∗
123 ∗ wr i t e wr i t e s the s p e c i f i e d data to the HID dev i ce .
124 ∗ @param bu f f e r − The data to be wr i t t en .
125 ∗ @param num bytes − The number o f by t e s to be wr i t t en .
126 ∗ @return − True i f a l l b y t e s were wri t ten , f a l s e o therwi se .
127 ∗/
128 bool wr i t e (unsigned const char ∗ bu f f e r , int num bytes ) {
129
130 bool su c c e s s = fa l se ;
131 i f ( m connected ) {
132 DWORD byte s wr i t t en ;
133 su c c e s s = WriteFi l e ( m handle , bu f f e r , num bytes ,
134 &byte s wr i t t en ,&m overlapped ) == TRUE;
135 su c c e s s = suc c e s s && byt e s wr i t t en == num bytes ;
136 }
137 return su c c e s s ;
138 }
139
140
141
142 /∗∗
143 ∗ read reads the data returned from the HID dev i ce .
144 ∗ @param bu f f e r − The t a r g e t f o r the data .
145 ∗ @param max bytes − The maximum number o f by t e s t ha t shou ld be read .
146 ∗ @param by t e s r ead − Sp e c i f i e s the number o f by t e s read on return .
147 ∗ @param timeout − The number o f ms . b e f o r e the func t i on times out .
148 ∗ @return − True i f the data was read , f a l s e o therwi se .
149 ∗/
150 bool read (unsigned const char ∗ bu f f e r , int max bytes ,
151 int & bytes read , int t imeout ) {
152
153 bool su c c e s s = fa l se ;
154 i f ( m connected ) {
155 ReadFile ( m handle , (LPVOID) bu f f e r , max bytes ,
156 (LPDWORD)&bytes read ,&m overlapped ) ;
157 DWORD Result = WaitForSingleObject ( m event , t imeout ) ;
158 i f ( Result == WAIT OBJECT 0) {
159 su c c e s s = true ;
160 } else {
161 Cancel Io ( m handle ) ;
162 }
163 ResetEvent ( m event ) ;
164 }
165 return su c c e s s ;
166 }
167
168
169
170 private :
171
172 /∗∗
173 ∗ open dev ice opens the HID dev i ce with the s p e c i f i e d index .
174 ∗ @param index − The index o f the dev i ce .
175 ∗ @return − True i f the dev i ce was opened , f a l s e o therwi se .
176 ∗/
177 bool open dev ice ( int index ) {
178
179 bool su c c e s s = fa l se ;
180 GUID guid ;
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181 HidD GetHidGuid (&guid ) ;
182 HDEVINFO dev in fo = SetupDiGetClassDevs(&guid ,NULL,NULL,
183 DIGCF PRESENT | DIGCF DEVICEINTERFACE) ;
184
185 SP DEVICE INTERFACE DATA dev in t da ta ;
186 dev in t da ta . cbS ize = s izeof (SP DEVICE INTERFACE DATA) ;
187
188 i f ( SetupDiEnumDeviceInterfaces ( devinfo ,NULL,&guid ,
189 index ,& dev in t da ta ) == TRUE) {
190 DWORD s i z e ;
191 SetupDiGetDev ice Inte r faceDeta i l ( devinfo ,& dev int data ,
192 NULL,0 ,& s i z e , 0 ) ;
193
194 PSP INTERFACE DEVICE DETAIL DATA d e t a i l =
195 (PSP INTERFACE DEVICE DETAIL DATA) mal loc ( s i z e ) ;
196 de t a i l−>cbS ize = s izeof (SP INTERFACE DEVICE DETAIL DATA) ;
197
198 i f ( Se tupDiGetDev ice Inte r faceDeta i l ( devinfo ,& dev int data ,
199 de t a i l , s i z e ,NULL,NULL) ) {
200 m handle = Crea teF i l e ( d e t a i l−>DevicePath ,
201 GENERIC READ | GENERIC WRITE,
202 FILE SHARE READ | FILE SHARE WRITE,
203 NULL, OPEN EXISTING,
204 FILE FLAG OVERLAPPED, NULL) ;
205 // Set the b u f f e r s i z e to 1
206 HidD SetNumInputBuffers ( m handle , 1) ;
207 m event = CreateEvent (NULL, TRUE, TRUE, ”” ) ;
208 m overlapped . O f f s e t = 0 ;
209 m overlapped . Of f setHigh = 0 ;
210 m overlapped . hEvent = m event ;
211 su c c e s s = true ;
212 }
213 f r e e ( d e t a i l ) ;
214 }
215 SetupDiDest royDevice In foLi s t ( dev in fo ) ;
216 return su c c e s s ;
217 }
218
219 } ;
220 } // namespace WiiIRLib
221 // WIIIRLIB HIDBRIDGE H
222 #endif

C.2 Logger.h

1 #ifndef WIIIRLIB LOGGER H
2 #define WIIIRLIB LOGGER H
3
4 #include <iostream>
5 #include <fstream>
6
7 namespace WiiIRLib {
8
9 /∗∗

10 ∗ Logger i s a c l a s s t ha t l o g s program information , e r ror s and
11 ∗ IR po in t data .
12 ∗/
13 class Logger {
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14
15 private :
16 std : : o f s tream m t a r g e t f i l e ;
17 bool m log messages ;
18 bool m log e r r o r s ;
19 bool m log po s i t i o n s ;
20 bool m matlab mode ;
21 bool m logg ing enab led ;
22
23 public :
24
25 Logger ( ) {
26
27 m logg ing enab led = fa l se ;
28 m log messages = fa l se ;
29 m log e r r o r s = fa l se ;
30 m log po s i t i o n s = fa l se ;
31 m matlab mode = fa l se ;
32 }
33
34
35
36 ˜Logger ( ) {
37
38 i f (m matlab mode ) {
39 m ta r g e t f i l e << ” ] ; ” ;
40 }
41 m ta r g e t f i l e . c l o s e ( ) ;
42 }
43
44
45
46 /∗∗
47 ∗ i n i t s e t s up the l o g g e r . As d e f a u l t only p o s i t i o n s are logged .
48 ∗ @param f i l e − The path and f i l e name of the t a r g e t f i l e .
49 ∗ @param matlab mode − True i f p o s i t i o n s shou ld be l ogged in Matlab
50 ∗ format f o r graph drawing . I f enabled , only p o s i t i o n s w i l l be l ogged .
51 ∗ @param messages − True i f messages shou ld be logged , f a l s e o therwi se .
52 ∗ @param error s − True i f e r ror s shou ld be logged , f a l s e o therwi se .
53 ∗ @param po s i t i o n s − True i f p o s i t i o n s shou ld be logged ,
54 ∗ f a l s e o therwi se .
55 ∗/
56 void i n i t ( std : : s t r i n g f i l e , bool matlab mode , bool messages = false ,
57 bool e r r o r s = false , bool po s i t i o n s = true ) {
58
59 m ta r g e t f i l e . open ( f i l e . c s t r ( ) ) ;
60 m matlab mode = matlab mode ;
61 m log messages = messages && ! m matlab mode ;
62 m log e r r o r s = e r r o r s && ! m matlab mode ;
63 m log po s i t i o n s = po s i t i o n s | | m matlab mode ;
64 i f (m matlab mode ) {
65 m ta r g e t f i l e << ”A = [ ” ;
66 }
67 }
68
69
70
71 /∗∗
72 ∗ t o g g l e l o g g i n g enab l e s or d i s a b l e s l o g g i n g to a f i l e .
73 ∗ @return − True i f l o g g i n g i s enabled , f a l s e o therwi se .
74 ∗/
75 bool t o g g l e l o g g i n g ( ) {
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76
77 return m logg ing enab led = ! m logg ing enab led ;
78 }
79
80
81
82 /∗∗
83 ∗ l og message l o g s the s p e c i f i e d message i f message l o g g i n g i s enab led .
84 ∗ @param message − The message to l o g .
85 ∗/
86 void l og message ( std : : s t r i n g message ) {
87
88 i f ( m log messages && m logg ing enab led ) {
89 m ta r g e t f i l e << ”Message : ” << message . c s t r ( ) << std : : endl ;
90
91 }
92 }
93
94
95
96 /∗∗
97 ∗ l o g e r r o r l o g s the s p e c i f i e d error i f error
98 ∗ l o g g i n g i s enab led .
99 ∗ @param error − The error to l o g .

100 ∗/
101 void l o g e r r o r ( std : : s t r i n g e r r o r ) {
102
103 i f ( m l og e r r o r s && m logg ing enab led ) {
104 m ta r g e t f i l e << ”Error : ” << e r r o r . c s t r ( ) << std : : endl ;
105 }
106 }
107
108
109
110 /∗∗
111 ∗ l o g p o s i t i o n l o g s the s p e c i f i e d po s i t i on i f p o s i t i on
112 ∗ l o g g i n g i s enab led .
113 ∗ @param x − The x coord inat to l o g .
114 ∗ @param y − The y coord inat to l o g .
115 ∗ @param z − The z coord inat to l o g .
116 ∗/
117 void l o g p o s i t i o n ( f loat x , f loat y , f loat z ) {
118
119 i f ( m l og po s i t i o n s && m matlab mode && m logg ing enab led ) {
120 m ta r g e t f i l e << ” [ ” << x << ” ; ” << y << ” ; ” << z << ” ] , ” ;
121 } else i f ( m l og po s i t i o n s && m logg ing enab led ) {
122 m ta r g e t f i l e << ” Pos i t i on : ( ” << x << ” , ” << y << ” , ” << z
123 << ” ) ” << std : : endl ;
124 }
125 }
126
127 } ;
128 } // namespace WiiIRLib
129 // WIIIRLIB LOGGER H
130 #endif

C.3 Wiimote.h
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1 #ifndef WIIIRLIB WIIMOTE H
2 #define WIIIRLIB WIIMOTE H
3
4 #define M PI 3.14159265358979323846 f
5
6 #include <cmath>
7 #include ”HIDBridge . h”
8 #include ”Logger . h”
9

10 /∗∗
11 ∗ Point r ep re s en t s a de t e c t ed IR poin t by the Wiimote .
12 ∗/
13 typedef struct point {
14 f loat x , y , z , s i z e ;
15 void i n i t ( f loat x = 1 , f loat y = 1 , f loat z = 0 , f loat s i z e = 15) {
16 x = x ;
17 y = y ;
18 s i z e = s i z e ;
19 z = z ;
20 }
21 } point ;
22
23 namespace WiiIRLib {
24
25 /∗∗
26 ∗ Wiimote i s a c l a s s hande l ing a l l communication with a Wiimote .
27 ∗ I t i s dependent on HIDBridge to perform low l e v e l communication .
28 ∗/
29 class Wiimote {
30
31 private :
32
33 // Define but ton va lue s
34 stat ic const unsigned short BUTTON All = 0x9F1F ;
35
36 // Define l e d and v i b r a t i on va lue s
37 stat ic const unsigned char OUTPUT LED 1 = 0x10 ;
38 stat ic const unsigned char OUTPUT LED 2 = 0x20 ;
39 stat ic const unsigned char OUTPUT LED 3 = 0x40 ;
40 stat ic const unsigned char OUTPUT LED 4 = 0x80 ;
41 stat ic const unsigned char OUTPUT LED ALL = 0xF0 ;
42 stat ic const unsigned char OUTPUT VIBRATION = 0x01 ;
43 stat ic const unsigned char OUTPUT ALL = 0xF1 ;
44 stat ic const unsigned char OUTPUT NONE = 0x00 ;
45
46 // Define output channels
47 stat ic const unsigned char OUTPUT CHANNEL FORCE FEEDBACK = 0x13 ;
48 stat ic const unsigned char OUTPUT CHANNEL LED = 0x11 ;
49 stat ic const unsigned char OUTPUT CHANNEL REPORT = 0x12 ;
50 stat ic const unsigned char OUTPUTREADMEMORY = 0x17 ;
51 stat ic const unsigned char OUTPUTWRITEMEMORY = 0x16 ;
52 stat ic const unsigned char OUTPUT ENABLE IR = 0x13 ;
53 stat ic const unsigned char OUTPUT ENABLE IR2 = 0x1a ;
54
55 // Define repor t r e que s t t ypes
56 stat ic const unsigned char REQUEST CONTINUOUS REPORTS = 0x04 ;
57 stat ic const unsigned char REQUEST SINGLE REPORTS = 0x00 ;
58
59 // Define input channels
60 stat ic const unsigned char INPUT CHANNEL BUTTONS ONLY = 0x30 ;
61 stat ic const unsigned char INPUT CHANNEL MOTION IR = 0x33 ;
62
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63 // Define IR r e l a t e d cons tant s
64 stat ic const unsigned long IR REG 1 = 0x04b00030 ;
65 stat ic const unsigned long IR REG 2 = 0x04b00033 ;
66 stat ic const unsigned long IR SENS ADDR 1 = 0x04b00000 ;
67 stat ic const unsigned long IR SENS ADDR 2 = 0x04b0001a ;
68
69 stat ic const unsigned char IR MODE OFF = 0 ;
70 stat ic const unsigned char IR MODE STD = 1 ;
71 stat ic const unsigned char IR MODE EXP = 3 ;
72 stat ic const unsigned char IR MODE FULL = 5 ;
73
74 stat ic const int m outpu t bu f f e r s i z e = 22 ;
75 unsigned char m output buf f e r [ m ou tpu t bu f f e r s i z e ] ;
76
77 stat ic const int m inpu t bu f f e r s i z e = 22 ;
78 unsigned char m input bu f f e r [ m i npu t bu f f e r s i z e ] ;
79
80 point point1 , point2 , e y e po s i t i on , o l d e y e p o s i t i o n ;
81 point t a r g e t v e c t o r , up vector ;
82
83 f loat m le f t , m right , m bottom , m top ;
84
85 f loat dot distance in mm ;
86 f loat sc reen he ight in mm ;
87 f loat r a d i a n s p e r p i x e l ;
88
89 f loat c ame r a v e r t i c a l e ang l e ;
90 f loat r e l a t i v e v e r t i c a l a n g l e ;
91
92 f loat m near plane ;
93 f loat m far p lane ;
94
95 f loat screenAspect ;
96
97 WiiIRLib : : HIDBridge h id dev i c e ;
98 WiiIRLib : : Logger m logger ;
99

100 private :
101
102 /∗∗
103 ∗ empty ou tpu t bu f f e r c l e a r s the output and input b u f f e r s .
104 ∗/
105 void empty output buf f e r ( ) {
106
107 memset ( m output buf fer , 0 , m ou tpu t bu f f e r s i z e ) ;
108 memset ( m input buf f e r , 0 , m i npu t bu f f e r s i z e ) ;
109 }
110
111
112
113 /∗∗
114 ∗ c a l c u l a t e e y e p o i n t c a l c u l a t e s the po s i t i on o f the user ’ s eye
115 ∗ in world coord ina te s .
116 ∗/
117 void c a l c u l a t e e y e p o s i t i o n ( ) {
118
119 e y e p o s i t i o n . x = ( point1 . x+point2 . x ) ∗0 .5 f ;
120 e y e p o s i t i o n . y = ( point1 . y+point2 . y ) ∗0 .5 f ;
121 e y e p o s i t i o n . z = sq r t (pow( point1 . x−point2 . x , 2 )+
122 pow( point1 . y−point2 . y , 2 ) ) ;
123 }
124
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125
126 public :
127
128 Wiimote ( ) {
129
130 empty output buf f e r ( ) ;
131
132 dot distance in mm = 30.0 f ;
133 // dot dis tance in mm = 5 ;
134 sc reen he ight in mm = 192 . 0 ;
135 r a d i a n s p e r p i x e l = M PI / 4 .0 f / 1024 .0 f ;
136
137 c ame r a v e r t i c a l e ang l e = 0 ;
138 r e l a t i v e v e r t i c a l a n g l e = 0 ;
139
140 m near plane = 0.05 f ;
141 m far p lane = 100 ;
142
143 screenAspect = 1 ;
144 } ;
145
146
147
148 ˜Wiimote ( ) {}
149
150
151
152 /∗∗
153 ∗ t o g g l e l o g g i n g enab l e s or d i s a b l e s l o g g i n g to a f i l e .
154 ∗ @return − True i f l o g g i n g i s enabled , f a l s e o therwi se .
155 ∗/
156 bool t o g g l e l o g g i n g ( ) {
157
158 return m logger . t o g g l e l o g g i n g ( ) ;
159 }
160
161
162
163 /∗∗
164 ∗ connect opens a connect ion to the Wiimote and turns on LED 1
165 ∗ as the only l i g h t i f s u c c e s s f u l .
166 ∗ @return − True i f s u c c e s s f u l , f a l s e o therwi se .
167 ∗/
168 bool connect ( ) {
169
170 bool su c c e s s = h id dev i c e . connect ( ) ;
171 i f ( su c c e s s ) {
172 s e t l e d s t a t u s (OUTPUT LED 1) ;
173 m logger . log message ( ”Connection e s t a b i l i s h e d ” ) ;
174 }
175 return su c c e s s ;
176 }
177
178
179
180 /∗∗
181 ∗ Disconnect c l o s e s the connect ion to the Wiimote and turns on
182 ∗ LED 3 as the only l i g h t .
183 ∗ @return − True i f s u c c e s s f u l , f a l s e o therwi se .
184 ∗/
185 bool d i s connec t ( ) {
186
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187 s e t l e d s t a t u s (OUTPUT LED 3) ;
188 Sleep (10) ;
189 return h id dev i c e . d i s connec t ( ) ;
190 }
191
192
193
194 /∗∗
195 ∗ s e t l e d s t a t u s turns on/ o f f the s p e c i f i e d LEDs.
196 ∗ @param l e d s − A bitmask s p e c i f y i n g which LEDs tha t shou ld
197 ∗ be turned on/ o f f .
198 ∗ @return − True i f the LEDs were set , f a l s e o therwi se .
199 ∗/
200 bool s e t l e d s t a t u s (unsigned char l e d s ) {
201
202 Sleep (10) ;
203 empty output buf f e r ( ) ;
204 m output buf f e r [ 0 ] = OUTPUT CHANNEL LED;
205 m output buf f e r [ 1 ] = l ed s ;
206 bool s t a tu s = h id dev i c e . wr i t e ( m output buf fer , m ou tpu t bu f f e r s i z e ) ;
207 return s t a tu s ;
208 }
209
210
211 /∗∗
212 ∗ i s connec t ed re turns whether a Wiimote i s connected .
213 ∗ @return − True i f connected , f a l s e o therwi se .
214 ∗/
215 bool i s c onne c t ed ( ) {
216
217 return h id dev i c e . i s c onne c t ed ( ) ;
218 }
219
220
221 /∗∗
222 ∗ e n a b l e i r s e t s the r epor t ing mode to continuous , enab l e s IR 1 and 2
223 ∗ and s e t s the data mode to extended . I f s u c c e s s f u l , LEDs 1 and 2
224 ∗ are turned on .
225 ∗ @return − True i f IR was enabled , f a l s e o therwi se .
226 ∗/
227 bool e n a b l e i r ( ) {
228
229 const unsigned char IR SENS MIDRANGE PART1 [ ] =
230 {0x02 , 0x00 , 0x00 , 0x71 , 0x01 , 0x00 , 0xaa , 0x00 , 0x64 } ;
231 const unsigned char IR SENS MIDRANGE PART2 [ ] = {0x63 , 0x03 } ;
232
233 bool su c c e s s = fa l se ;
234
235 point1 . i n i t ( ) ;
236 point2 . i n i t ( ) ;
237 e y e p o s i t i o n . i n i t ( ) ;
238 t a r g e t v e c t o r . i n i t ( 0 . 5 , 0 . 5 , 0 . 0 ) ;
239 up vector . i n i t ( 0 . 0 , 1 . 0 , 0 . 0 ) ;
240 o l d e y e p o s i t i o n . i n i t ( ) ;
241
242 // Set cont inuous repor t ing mode .
243 empty output buf f e r ( ) ;
244 m output buf f e r [ 0 ] = OUTPUT CHANNEL REPORT;
245 m output buf f e r [ 1 ] = REQUEST CONTINUOUS REPORTS;
246 m output buf f e r [ 2 ] = INPUT CHANNEL MOTION IR;
247 su c c e s s = h id dev i c e . wr i t e ( m output buf fer , m ou tpu t bu f f e r s i z e ) ;
248
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249 Sleep (10) ;
250
251 // Enable IR 1.
252 empty output buf f e r ( ) ;
253 m output buf f e r [ 0 ] = OUTPUT ENABLE IR;
254 m output buf f e r [ 1 ] = REQUEST CONTINUOUS REPORTS;
255 su c c e s s = suc c e s s &&
256 h id dev i c e . wr i t e ( m output buf fer , m ou tpu t bu f f e r s i z e ) ;
257
258 Sleep (10) ;
259
260 // Enable IR 2.
261 empty output buf f e r ( ) ;
262 m output buf f e r [ 0 ] = OUTPUT ENABLE IR2;
263 m output buf f e r [ 1 ] = REQUEST CONTINUOUS REPORTS;
264 su c c e s s = suc c e s s &&
265 h id dev i c e . wr i t e ( m output buf fer , m ou tpu t bu f f e r s i z e ) ;
266
267 Sleep (10) ;
268
269 // Write s e n s i t i v i t y data to the Wiimote and s e t IR mode to Extended .
270 i f ( su c c e s s ) {
271 unsigned char va l = 0x1 ;
272 su c c e s s = write memory ( IR REG 1 ,1 ,& va l ) ;
273 Sleep (10) ;
274 }
275 i f ( su c c e s s ) {
276 su c c e s s = write memory (IR SENS ADDR 1 , 9 , IR SENS MIDRANGE PART1) ;
277 Sleep (10) ;
278 }
279 i f ( su c c e s s ) {
280 su c c e s s = write memory (IR SENS ADDR 2 , 2 , IR SENS MIDRANGE PART2) ;
281 Sleep (10) ;
282 }
283 i f ( su c c e s s ) {
284 su c c e s s = write memory ( IR REG 2 ,1 ,&IR MODE EXP) ;
285 Sleep (10) ;
286 }
287 i f ( su c c e s s ) {
288 unsigned char va l = 0x8 ;
289 su c c e s s = write memory ( IR REG 1 ,1 ,& va l ) ;
290 Sleep (10) ;
291 }
292
293 // Turn on LEDs 1 and 2.
294 i f ( su c c e s s ) {
295 s e t l e d s t a t u s (OUTPUT LED 1 | OUTPUT LED 2) ;
296 m logger . log message ( ”IR enabled ” ) ;
297 }
298 return su c c e s s ;
299 }
300
301
302
303 /∗∗
304 ∗ d i s a b l e i r d i s a b l e s both IR1 and 2 and s e t s the r epor t ing mode
305 ∗ to bu t tons only mode to avoid continuous repor t ing . I f s u c c e s s f u l
306 ∗ LED 1 i s turned on .
307 ∗ @return − True i f s u c c e s s f u l , f a l s e o therwi se .
308 ∗/
309 bool d i s a b l e i r ( ) {
310
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311 bool su c c e s s = fa l se ;
312
313 // Set r epor t ing mode to on but ton press only .
314 empty output buf f e r ( ) ;
315 m output buf f e r [ 0 ] = OUTPUT CHANNEL REPORT;
316 m output buf f e r [ 1 ] = REQUEST SINGLE REPORTS;
317 m output buf f e r [ 2 ] = INPUT CHANNEL BUTTONS ONLY;
318 su c c e s s = h id dev i c e . wr i t e ( m output buf fer , m ou tpu t bu f f e r s i z e ) ;
319
320 Sleep (10) ;
321
322 // Disab l e IR 1.
323 empty output buf f e r ( ) ;
324 m output buf f e r [ 0 ] = OUTPUT ENABLE IR;
325 m output buf f e r [ 1 ] = 0x00 ;
326 su c c e s s = h id dev i c e . wr i t e ( m output buf fer , m ou tpu t bu f f e r s i z e ) ;
327
328 Sleep (10) ;
329
330 // Disab l e IR 2.
331 empty output buf f e r ( ) ;
332 m output buf f e r [ 0 ] = OUTPUT ENABLE IR2;
333 m output buf f e r [ 1 ] = 0x00 ;
334 su c c e s s = suc c e s s &&
335 h id dev i c e . wr i t e ( m output buf fer , m ou tpu t bu f f e r s i z e ) ;
336
337 Sleep (10) ;
338
339 // Turn on LED 1.
340 i f ( su c c e s s ) {
341 s e t l e d s t a t u s (OUTPUT LED 1) ;
342 m logger . log message ( ”IR d i s ab l ed ” ) ;
343 }
344 return su c c e s s ;
345 }
346
347
348
349 /∗∗
350 ∗ r e t r i e v e d a t a i s a hear t bea t func t i on tha t r e t r i e v e s the l a t e s t
351 ∗ data from the Wiimote and s t o r e s i t . The user ’ s po s i t i on in the
352 ∗ world and the boundaries o f the view frustum are a l s o c a l c u l a t e d .
353 ∗ To reduce high frequency noise , the va lue i s a l s o smoothed .
354 ∗ @param timeout − The timeout f o r the func t i on .
355 ∗ @return − True i f the data was r e t r i e v e d suc c e s s f u l , f a l s e o therwi se .
356 ∗/
357 bool r e t r i e v e d a t a ( int t imeout = 1) {
358
359 // S leep 1 ms to avoid too f r equen t reads .
360 Sleep (1 ) ;
361
362 bool su c c e s s = fa l se ;
363 int byte s r ead = 0 ;
364
365 // Read the data .
366 su c c e s s = h id dev i c e . read ( m input buf f e r ,
367 m inpu t bu f f e r s i z e , bytes read , t imeout ) ;
368
369 i f ( su c c e s s && byte s r ead > 0) {
370 i f ( m input bu f f e r [ 0 ] == INPUT CHANNEL MOTION IR) {
371 // The package i s o f the expec ted format , conta in ing motion
372 // and IR data . S h i f t i n g i s due to the extended IR mode . See
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373 // h t t p :// wiibrew . org/ index . php? t i t l e=Wiimote#IR Camera
374 // fo r d e t a i l s .
375
376
377 // Get po in t po s i t i on and s i z e . Then c a l c u l a t e the users po s i t i on .
378 point1 . x = ( f loat ) ( m input bu f f e r [6+0] |
379 ( m input bu f f e r [6+2]&0x30 ) << 4) ;
380 point1 . y = ( f loat ) ( m input bu f f e r [6+1] |
381 ( m input bu f f e r [6+2]&0xC0) << 2) ;
382 point2 . x = ( f loat ) ( ( m input bu f f e r [6+3] |
383 ( m input bu f f e r [6+5]&0x30 ) << 4) +0.01) ;
384 point2 . y = ( f loat ) ( m input bu f f e r [6+4] |
385 ( m input bu f f e r [6+5]&0xC0) << 2) ;
386 point1 . s i z e = ( f loat ) ( m input bu f f e r [6+2] & 0xF) ;
387 point2 . s i z e = ( f loat ) ( m input bu f f e r [6+5] & 0xF) ;
388
389
390 // Only c a l c u l a t e a new head po s i t i on i f the po in t s are de t e c t ed .
391 i f ( po int1 . y < 769 .0 f && point2 . y < 769 .0 f ) {
392
393 point1 . x = 1023 − point1 . x ;
394 point2 . x = 1023 − point2 . x ;
395
396 // Ca l cu la t e i n i t i a l e s t imate o f eye po s i t i on .
397 c a l c u l a t e e y e p o s i t i o n ( ) ;
398
399 m logger . l o g p o s i t i o n ( e y e p o s i t i o n . x /1023.0 f ,
400 e y e p o s i t i o n . y /767 .0 f , e y e p o s i t i o n . z ) ;
401
402 f loat o f f s e t = ( ( e y e p o s i t i o n . x−512.0 f ) /1023.0 f ) ∗0.0776 f ;
403 f loat ang le = r ad i a n s p e r p i x e l ∗ e y e p o s i t i o n . z / 2 .0 f ;
404
405 // Ca l cu la t e the eye pos i t i on , cons ider ing per spec t i v e ,
406 // screen s i z e and LED di s tance . Apporach based on the
407 // s o l u t i on o f Johnny Lee .
408 e y e p o s i t i o n . z = dot distance in mm / 2 .0 f /
409 tan ( ang le ) / screen he ight in mm ;
410 e y e p o s i t i o n . x = s i n ( r a d i a n s p e r p i x e l ∗ ( e y e p o s i t i o n . x − 512) )
411 ∗ e y e p o s i t i o n . z ;
412 r e l a t i v e v e r t i c a l a n g l e = ( e y e p o s i t i o n . y − 384) ∗
413 r a d i a n s p e r p i x e l ;
414 e y e p o s i t i o n . y =
415 s i n ( r e l a t i v e v e r t i c a l a n g l e + came r a v e r t i c a l e ang l e )
416 ∗ e y e p o s i t i o n . z ;
417
418 // Weight the prev ious c a l c u l a t e d po s i t i on by 0.3 to smooth
419 // the movement o f reduce the high frequency noise .
420 e y e p o s i t i o n . x = ey e po s i t i o n . x ∗0 .7 f+o l d e y e p o s i t i o n . x ∗0 .3 f ;
421 e y e p o s i t i o n . y = ey e po s i t i o n . y ∗0 .7 f+o l d e y e p o s i t i o n . y ∗0 .3 f ;
422 e y e p o s i t i o n . z = ey e po s i t i o n . z ∗0 .7 f+o l d e y e p o s i t i o n . z ∗0 .3 f ;
423
424 o l d e y e p o s i t i o n . x = ey e po s i t i o n . x ;
425 o l d e y e p o s i t i o n . y = ey e po s i t i o n . y ;
426 o l d e y e p o s i t i o n . z = ey e po s i t i o n . z ;
427
428 // Ca l cu la t e the boundaries f o r the view frustum .
429 // Apporach based on the s o l u t i on o f Johnny Lee .
430 m le f t = m near plane ∗(−0.5 f ∗ screenAspect + ey e po s i t i o n . x ) /
431 e y e p o s i t i o n . z − o f f s e t ;
432 m right = m near plane ∗( 0 . 5 f ∗ screenAspect + ey e po s i t i o n . x ) /
433 e y e p o s i t i o n . z − o f f s e t ;
434 m bottom = m near plane ∗(−0.5 f − e y e p o s i t i o n . y ) / e y e p o s i t i o n . z ;
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435 m top = m near plane ∗( 0 . 5 f − e y e p o s i t i o n . y ) / e y e p o s i t i o n . z ;
436 }
437 } else {
438 m logger . l o g e r r o r ( ”Unexpected package” ) ;
439 }
440 }
441 return su c c e s s ;
442 }
443
444
445
446 /∗∗
447 ∗ i n i t l o g g e r s e t s up the l o g g e r . As d e f a u l t only p o s i t i o n s are logged .
448 ∗ @param f i l e − The path and f i l e name of the t a r g e t f i l e .
449 ∗ @param matlab mode − True i f p o s i t i o n s shou ld be l ogged in Matlab
450 ∗ format f o r graph drawing . I f enabled , only p o s i t i o n s w i l l be l ogged .
451 ∗ @param messages − True i f messages shou ld be logged , f a l s e o therwi se .
452 ∗ @param error s − True i f e r ror s shou ld be logged , f a l s e o therwi se .
453 ∗ @param po s i t i o n s − True i f p o s i t i o n s shou ld be logged ,
454 ∗ f a l s e o therwi se .
455 ∗/
456 void i n i t l o g g e r ( std : : s t r i n g f i l e , bool matlab mode ,
457 bool messages = false , bool e r r o r s = false , bool po s i t i o n s = true ) {
458
459 m logger . i n i t ( f i l e , matlab mode , messages , e r r o r s , p o s i t i o n s ) ;
460 }
461
462
463
464 /∗∗
465 ∗ g e t po i n t 1 re turns the f i r s t po in t .
466 ∗ @return − The l a t e s t po in t .
467 ∗/
468 const point g e t po in t1 ( ) {
469
470 return point1 ;
471 }
472
473
474
475 /∗∗
476 ∗ g e t po i n t 2 re turns the second po in t .
477 ∗ @return − The l a t e s t po in t .
478 ∗/
479 const point g e t po in t2 ( ) {
480
481 return point2 ;
482 }
483
484
485
486 /∗∗
487 ∗ g e t e y e p o s i t i o n re turns the po s i t i on o f the user ’ s head .
488 ∗ @return − The l a t e s t p o s i t i on .
489 ∗/
490 const point g e t e y e p o s i t i o n ( ) {
491
492 return e y e p o s i t i o n ;
493 }
494
495
496
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497 /∗∗
498 ∗ g e t t a r g e t re turns the t a r g e t o f the camera .
499 ∗ @return − The t a r g e t o f the camera .
500 ∗/
501 const point g e t t a r g e t ( ) {
502
503 return t a r g e t v e c t o r ;
504 }
505
506
507
508 /∗∗
509 ∗ ge t up re turns the up vec tor in the world .
510 ∗ @return − The up vec tor .
511 ∗/
512 const point get up ( ) {
513
514 return up vector ;
515 }
516
517
518
519 /∗∗
520 ∗ g e t l e f t r e turns the l e f t boundary o f the view .
521 ∗ @return − The l e f t boundary .
522 ∗/
523 const f loat g e t l e f t ( ) {
524
525 return m le f t ;
526 }
527
528
529
530 /∗∗
531 ∗ g e t r i g h t re turns the r i g h t boundary o f the view .
532 ∗ @return − The r i g h t boundary .
533 ∗/
534 const f loat g e t r i g h t ( ) {
535
536 return m right ;
537 }
538
539
540
541 /∗∗
542 ∗ ge t bo t tom re turns the bottom boundary o f the view .
543 ∗ @return − The bottom boundary .
544 ∗/
545 const f loat get bottom ( ) {
546
547 return m bottom ;
548 }
549
550
551
552 /∗∗
553 ∗ g e t t o p re turns the top boundary o f the view .
554 ∗ @return − The top boundary .
555 ∗/
556 const f loat ge t top ( ) {
557
558 return m top ;
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559 }
560
561
562 /∗∗
563 ∗ ge t nea r p l ane re turns the near c l i p p i n g plane .
564 ∗ @return − The near c l i p p i n g plane .
565 ∗/
566 const f loat g e t n ea r p l an e ( ) {
567
568 return m near plane ;
569 }
570
571
572 /∗∗
573 ∗ g e t f a r p l a n e re turns the f a r c l i p p i n g plane .
574 ∗ @return − The fa r c l i p p i n g plane .
575 ∗/
576 const f loat g e t f a r p l a n e ( ) {
577
578 return m far p lane ;
579 }
580
581
582
583 /∗∗
584 ∗ write memory wr i t e s up to 16 by t e s o f data to the s p e c i f i e d memory
585 ∗ area in the Wiimote . Function i s based on the corresponding func t i on
586 ∗ in cWiiMote 0 .3 , a v a i l a b l e at h t t p ://www. ecando . i t /cwmdown . html .
587 ∗ @param address − The address to wr i t e to .
588 ∗ @param s i z e − The s i z e o f the data to be wr i t t en in by t e s .
589 ∗ @param bu f f e r − The data to be wr i t t en .
590 ∗ @return − True i f a l l data was wri t ten , f a l s e o therwi se .
591 ∗/
592 bool write memory (unsigned int address , unsigned char s i z e ,
593 const unsigned char ∗ bu f f e r ) {
594
595 bool r e t v a l = fa l se ;
596 i f ( s i z e <= 16) {
597 empty output buf f e r ( ) ;
598 m output buf f e r [ 0 ] = OUTPUTWRITEMEMORY;
599 m output buf f e r [ 1 ] = ( address & 0 xf f000000 ) >> 24 ;
600 m output buf f e r [ 2 ] = ( address & 0 x00 f f0000 ) >> 16 ;
601 m output buf f e r [ 3 ] = ( address & 0 x0000 f f00 ) >> 8 ;
602 m output buf f e r [ 4 ] = ( address & 0 x f f ) ;
603 m output buf f e r [ 5 ] = s i z e ;
604 memcpy(&m output buf f e r [ 6 ] , bu f f e r , s i z e ) ;
605 r e t v a l = h id dev i c e . wr i t e ( m output buf fer , m ou tpu t bu f f e r s i z e ) ;
606 }
607 return r e t v a l ;
608 }
609
610
611
612 /∗∗
613 ∗ pr in t p r i n t s out the po s i t i on and s i z e o f the f i r s t two po in t s .
614 ∗/
615 void pr in t ( ) {
616
617 std : : cout << ” ( x1 , y1 , s1 ) : ” << point1 . x << ” , ” <<
618 point1 . y << ” , ” << point1 . s i z e << std : : endl ;
619 std : : cout << ” ( x2 , y2 , s2 ) : ” << point2 . x << ” , ” <<
620 point2 . y << ” , ” << point2 . s i z e << std : : endl ;
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621 }
622
623 } ;
624 } // WiiIRLib namespace
625 #endif //WIIIRLIB WIIMOTE H

C.4 WiiIRLib.cpp

1 #include <iostream>
2 #include ”Wiimote . h”
3 #include ”GL/glew . h”
4 #include ”GL/ g lu t . h”
5
6 /∗∗
7 ∗ TargetRoom renders a cube conta in ing a number o f t a r g e t s us ing OpenGL.
8 ∗ The sensor bar and Wiimote can then be used to move forward and backward
9 ∗ as we l l as l ook around in the room .

10 ∗/
11 WiiIRLib : : Wiimote ∗m wiimote = NULL;
12 GLfloat cubedepth = 3 . 0 ;
13
14 // Define the cube
15 const int no v e r t i c e s = 5 ;
16 GLfloat l e f t [ n o v e r t i c e s ∗ no v e r t i c e s ∗ 3 ] ;
17 GLfloat r i g h t [ n o v e r t i c e s ∗ no v e r t i c e s ∗ 3 ] ;
18 GLfloat top [ n o v e r t i c e s ∗ no v e r t i c e s ∗ 3 ] ;
19 GLfloat bottom [ n o v e r t i c e s ∗ no v e r t i c e s ∗ 3 ] ;
20 GLfloat back [ n o v e r t i c e s ∗ no v e r t i c e s ∗ 3 ] ;
21 GLint cube i nd i c e s [ ] = {0 ,1 , 2 , 3 , 4 ,
22 9 ,8 , 7 , 6 , 5 ,
23 10 ,11 ,12 ,13 ,14 ,
24 19 ,18 ,17 ,16 ,15 ,
25 20 ,21 ,22 ,23 ,24 ,
26 19 ,14 ,9 ,4 , 3 ,
27 8 ,13 ,18 ,23 ,22 ,
28 17 ,12 ,7 ,2 , 1 ,
29 6 ,11 ,16 ,21 ,20 ,
30 15 ,10 , 5 , 0} ;
31
32
33
34 /∗∗
35 ∗ p l a c e t a r g e t p l a c e s a t a r g e t in the cube .
36 ∗ @param x − The x−coord inate o f the t a r g e t .
37 ∗ @param y − The y−coord inate o f the t a r g e t .
38 ∗ @param z − The z−coord inate o f the t a r g e t .
39 ∗/
40 void p l a c e t a r g e t ( f loat x , f loat y , f loat z ) {
41
42 f loat s i z e = 0 . 0 6 ;
43 f loat h idd en s i z e = s i z e ∗ 0 . 6 ;
44 f loat hidden depth = 0 . 1 ;
45 // Define the t a r g e t s and some ”hidden” t a r g e t s behind the main t a r g e t s .
46 GLfloat t a r g e t [ ] = {x−s i z e , y+s i z e , z ,
47 x+s i z e , y+s i z e , z ,
48 x+s i z e , y−s i z e , z ,
49 x−s i z e , y−s i z e , z ,
50 x , y , z ,
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51 x , y , −cubedepth ,
52 x−s i z e ∗0 . 5 , y+s i z e ∗0 . 5 , z ,
53 x+s i z e ∗0 . 5 , y+s i z e ∗0 . 5 , z ,
54 x+s i z e ∗0 . 5 , y−s i z e ∗0 . 5 , z ,
55 x−s i z e ∗0 . 5 , y−s i z e ∗0 . 5 , z ,
56
57 x−h idden s i z e , y+h idden s i z e , z−hidden depth ,
58 x+h idden s i z e , y+h idden s i z e , z−hidden depth ,
59 x+h idden s i z e , y−h idden s i z e , z−hidden depth ,
60 x−h idden s i z e , y−h idden s i z e , z−hidden depth } ;
61
62 GLint i n d i c e s [ ] = {0 , 1 , 2 , 3} ;
63 GLint l i n e [ ] = {4 ,5} ;
64 GLint box [ ] = {6 , 7 , 8 , 9} ;
65 GLint hidden [ ] = {10 , 11 , 12 , 13} ;
66
67 g lVer texPo inte r (3 , GL FLOAT, 0 , t a r g e t ) ;
68
69 // Draw the t a r g e t s
70 g lCo l o r 3 f ( 1 . 0 , 1 . 0 , 1 . 0 ) ;
71 glDrawElements (GL POLYGON,4 ,GL UNSIGNED INT, box ) ;
72
73 g lCo l o r 3 f ( 1 . 0 , 0 . 0 , 0 . 0 ) ;
74 glDrawElements (GL LINES , 2 ,GL UNSIGNED INT, l i n e ) ;
75 glDrawElements (GL POLYGON,4 ,GL UNSIGNED INT, i n d i c e s ) ;
76
77 g lCo l o r 3 f ( 0 . 0 , 0 . 0 , 1 . 0 ) ;
78 glDrawElements (GL POLYGON,4 ,GL UNSIGNED INT, hidden ) ;
79 }
80
81
82
83 /∗∗
84 ∗ i n i t s e t s up the OpenGL s t a t e s and c a l c u l a t e s the po s i t i o n s o f the
85 ∗ v e r t i c e s t ha t makes up the cube .
86 ∗/
87 void i n i t (void ) {
88
89 // Set up OpenGL s t a t e s
90 g lC l ea rCo lo r ( 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ) ;
91 glShadeModel (GL FLAT) ;
92 glEnable (GL DEPTH TEST) ;
93 glEnable (GL LINE SMOOTH) ;
94 glEnable (GL BLEND) ;
95 glBlendFunc (GL SRC ALPHA, GL ONE MINUS SRC ALPHA) ;
96 g lHint (GL LINE SMOOTH HINT, GL DONT CARE) ;
97 glLineWidth ( 3 . 5 ) ;
98
99 // Ca l cu la t e the v e r t i c e s o f the cube .

100 f loat a , b ;
101 for ( int i = 0 ; i < no v e r t i c e s ; ++i ) {
102 for ( int j = 0 ; j < no v e r t i c e s ; ++j ) {
103 a = j /( f loat ) ( no v e r t i c e s −1) −0.5;
104 b = − i /( f loat ) ( no v e r t i c e s −1)∗ cubedepth ;
105
106 l e f t [ ( i ∗ no v e r t i c e s+j ) ∗3 ] = −0.5;
107 l e f t [ ( i ∗ no v e r t i c e s+j ) ∗3+1] = a ;
108 l e f t [ ( i ∗ no v e r t i c e s+j ) ∗3+2] = b+0.1;
109
110 r i g h t [ ( i ∗ no v e r t i c e s+j ) ∗3 ] = 0 . 5 ;
111 r i g h t [ ( i ∗ no v e r t i c e s+j ) ∗3+1] = a ;
112 r i g h t [ ( i ∗ no v e r t i c e s+j ) ∗3+2] = b+0.1;
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113
114 top [ ( i ∗ no v e r t i c e s+j ) ∗3 ] = a ;
115 top [ ( i ∗ no v e r t i c e s+j ) ∗3+1] = 0 . 5 ;
116 top [ ( i ∗ no v e r t i c e s+j ) ∗3+2] = b+0.1;
117
118 bottom [ ( i ∗ no v e r t i c e s+j ) ∗3 ] = a ;
119 bottom [ ( i ∗ no v e r t i c e s+j ) ∗3+1] = −0.5;
120 bottom [ ( i ∗ no v e r t i c e s+j ) ∗3+2] = b+0.1;
121
122 back [ ( i ∗ no v e r t i c e s+j ) ∗3 ] = a ;
123 back [ ( i ∗ no v e r t i c e s+j ) ∗3+1] = i /( f loat ) ( no v e r t i c e s −1) −0.5;
124 back [ ( i ∗ no v e r t i c e s+j ) ∗3+2] = −cubedepth ;
125 }
126 }
127 }
128
129
130
131 /∗∗
132 ∗ d i s p l a y renders the cube and t a r g e t s .
133 ∗/
134 void d i sp l ay (void ) {
135
136 g lC l ea r (GL COLOR BUFFER BIT) ;
137 g lCo l o r 3 f ( 1 . 0 , 1 . 0 , 1 . 0 ) ;
138 g lLoadIdent i ty ( ) ;
139 point p = m wiimote−>g e t e y e p o s i t i o n ( ) ;
140
141 // Set up the view matrix .
142 gluLookAt (p . x , p . y , p . z ,
143 p . x , p . y , 0 . 0 ,
144 0 . 0 , 1 . 0 , 0 . 0 ) ;
145
146 // Draw the cube .
147 g lCo l o r 3 f ( 1 . 0 , 1 . 0 , 1 . 0 ) ;
148 g lEnab l eC l i en tS ta t e (GL VERTEX ARRAY) ;
149
150 g lVer texPo inte r (3 , GL FLOAT, 0 , back ) ;
151 glDrawElements (GL LINE LOOP,45 ,GL UNSIGNED INT, cube i nd i c e s ) ;
152
153 g lVer texPo inte r (3 , GL FLOAT, 0 , l e f t ) ;
154 glDrawElements (GL LINE LOOP,45 ,GL UNSIGNED INT, cube i nd i c e s ) ;
155
156 g lVer texPo inte r (3 , GL FLOAT, 0 , r i g h t ) ;
157 glDrawElements (GL LINE LOOP,45 ,GL UNSIGNED INT, cube i nd i c e s ) ;
158
159 g lVer texPo inte r (3 , GL FLOAT, 0 , top ) ;
160 glDrawElements (GL LINE LOOP,45 ,GL UNSIGNED INT, cube i nd i c e s ) ;
161
162 g lCo l o r 3 f ( 0 . 0 , 1 . 0 , 0 . 0 ) ;
163 g lVer texPo inte r (3 , GL FLOAT, 0 , bottom ) ;
164 glDrawElements (GL LINE LOOP,45 ,GL UNSIGNED INT, cube i nd i c e s ) ;
165
166 // Draw the t a r g e t s .
167 p l a c e t a r g e t ( 0 . 0 , 0 . 0 , −1 . 0 ) ;
168 p l a c e t a r g e t ( 0 . 2 , −0 . 1 , 0 . 0 ) ;
169 p l a c e t a r g e t ( −0 . 3 , 0 . 3 , 0 . 1 ) ;
170 p l a c e t a r g e t ( 0 . 1 , 0 . 4 , −1 . 5 ) ;
171 p l a c e t a r g e t ( −0 . 2 , 0 . 0 , 0 . 2 ) ;
172 p l a c e t a r g e t (−0.25 ,−0.35 ,−1.4) ;
173 p l a c e t a r g e t (0 . 3 , −0 . 35 , 0 . 3 ) ;
174
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175 g lF lush ( ) ;
176 g lC l ea r (GL DEPTH BUFFER BIT) ;
177 }
178
179
180
181 /∗∗
182 ∗ reshape s e t s up the p ro j e c t i on matrix and v iewport .
183 ∗ @param w − The width o f the window .
184 ∗ @param h − The he i gh t o f the window .
185 ∗/
186 void reshape ( int w, int h) {
187
188 // Set up the v iewport .
189 glViewport (0 , 0 , ( GLs ize i ) w, ( GLs ize i ) h ) ;
190
191 // Set up the p ro j e c t i on matrix .
192 glMatrixMode (GL PROJECTION) ;
193 g lLoadIdent i ty ( ) ;
194 glFrustum ( m wiimote−>g e t l e f t ( ) , m wiimote−>g e t r i g h t ( ) ,
195 m wiimote−>get bottom ( ) , m wiimote−>ge t top ( ) ,
196 m wiimote−>g e t n ea r p l an e ( ) , m wiimote−>g e t f a r p l a n e ( ) ) ;
197 glMatrixMode (GL MODELVIEW) ;
198 }
199
200
201
202 /∗∗
203 ∗ i d l e i s the i d l e func t i on to perform when there i s nothing to do . I t
204 ∗ updates the view frustum and reads the newest data from the Wiimote .
205 ∗/
206 void i d l e ( ) {
207
208 // Set up the p ro j e c t i on matrix .
209 glMatrixMode (GL PROJECTION) ;
210 g lLoadIdent i ty ( ) ;
211 glFrustum ( m wiimote−>g e t l e f t ( ) , m wiimote−>g e t r i g h t ( ) ,
212 m wiimote−>get bottom ( ) , m wiimote−>ge t top ( ) ,
213 m wiimote−>g e t n ea r p l an e ( ) , m wiimote−>g e t f a r p l a n e ( ) ) ;
214 glMatrixMode (GL MODELVIEW) ;
215
216 // Get the newest data from the Wiimote .
217 m wiimote−>r e t r i e v e d a t a ( ) ;
218 g lutPostRed i sp lay ( ) ;
219 }
220
221
222
223 /∗∗
224 ∗ keyboard d e t e c t s inpu t s and a l l ows one to terminate the program
225 ∗ by pre s s ing the escape key .
226 ∗ @param key − The keyboard key .
227 ∗ @param x − The x po s i t i on o f the mouse .
228 ∗ @param x − The y po s i t i on o f the mouse .
229 ∗/
230 void keyboard (unsigned char key , int x , int y ) {
231
232 i f ( key == 27) {
233 // The pressed key i s the escape key .
234 std : : cout << ”IR ac t i va t ed : ” << ! m wiimote−>d i s a b l e i r ( ) << std : : endl ;
235 Sleep (1000) ;
236 m wiimote−>d i s connec t ( ) ;
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237 e x i t (0 ) ;
238 }
239 }
240
241
242
243 /∗∗
244 ∗ main e s t a b i l i s h e s the connect ion to the Wiimote , i n i t i a l i z e s the
245 ∗ OpenGL window and s t a r t s the render ing .
246 ∗ @param argc − The number o f arguments .
247 ∗ @param argv − The arguments .
248 ∗/
249 int main ( int argc , char∗∗ argv ) {
250
251 // Connect to the Wiimote
252 m wiimote = new WiiIRLib : : Wiimote ( ) ;
253 std : : cout << ” I s connected : ” << m wiimote−>i s c onne c t ed ( ) << std : : endl ;
254 m wiimote−>connect ( ) ;
255 std : : cout << ” I s connected : ” << m wiimote−>i s c onne c t ed ( ) << std : : endl ;
256 Sleep (1000) ;
257 std : : cout << ”IR ac t i va t ed : ” << m wiimote−>e n a b l e i r ( ) << std : : endl ;
258
259 m wiimote−>r e t r i e v e d a t a ( ) ;
260
261 // Set up the OpenGL window using GLUT.
262 g l u t I n i t (&argc , argv ) ;
263 g lut In i tDisp layMode (GLUT SINGLE | GLUT RGB) ;
264 glutInitWindowSize (500 , 500) ;
265 g lutIn i tWindowPos i t ion (100 , 100) ;
266 glutCreateWindow ( argv [ 0 ] ) ;
267 i n i t ( ) ;
268
269 // Set up the d i sp l ay , reshape , i d l e and keyboard func t i on .
270 glutDisplayFunc ( d i sp l ay ) ;
271 glutReshapeFunc ( reshape ) ;
272 g lut Id l eFunc ( i d l e ) ;
273 glutKeyboardFunc ( keyboard ) ;
274 glutMainLoop ( ) ;
275 return 0 ;
276 }
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