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Automated Brain Structure Segmentation Based on
Atlas Registration and Appearance Models

Fedde van der Lijn*, Marleen de Bruijne, Stefan Klein, Tom den Heijer, Yoo Y. Hoogendam, Aad van der Lugt,
Monique M. B. Breteler, and Wiro J. Niessen

Abstract—Accurate automated brain structure segmentation
methods facilitate the analysis of large-scale neuroimaging studies.
This work describes a novel method for brain structure segmen-
tation in magnetic resonance images that combines information
about a structure’s location and appearance. The spatial model
is implemented by registering multiple atlas images to the target
image and creating a spatial probability map. The structure’s ap-
pearance is modeled by a classifier based on Gaussian scale-space
features. These components are combined with a regularization
term in a Bayesian framework that is globally optimized using
graph cuts. The incorporation of the appearance model enables the
method to segment structures with complex intensity distributions
and increases its robustness against errors in the spatial model.
The method is tested in cross-validation experiments on two
datasets acquired with different magnetic resonance sequences,
in which the hippocampus and cerebellum were segmented by
an expert. Furthermore, the method is compared to two other
segmentation techniques that were applied to the same data. Re-
sults show that the atlas- and appearance-based method produces
accurate results with mean Dice similarity indices of 0.95 for the
cerebellum, and 0.87 for the hippocampus. This was comparable to
or better than the other methods, whereas the proposed technique
is more widely applicable and robust.

Index Terms—Atlas registration, brain structures, graph cuts,
MRI, pattern recognition, segmentation.
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I. INTRODUCTION

EVERAL neurological disorders like Parkinson’s disease,
S schizophrenia, and Alzheimer’s disease are believed to
cause changes in the shape and size of brain structures. Due to
its excellent soft-tissue contrast, magnetic resonance imaging
(MRI) has become an important tool for studying the etiology
and consequences of these diseases [1]-[3]. Extracting size
or shape information from MR images requires accurate and
reliable delineation of brain structures. Although manual seg-
mentation is still the gold standard for the analysis of image
data, automated segmentation can help decrease the workload
and increase reproducibility.

Many methods for automated brain structure segmentation
have been introduced in the past decade. Among these, atlas-
based segmentation techniques have arguably been the most
successful. In this approach a manually labeled atlas image is
registered to an unlabeled target image. The resulting deforma-
tion field is then used to warp the atlas labels to the target’s coor-
dinate system. Especially when registration errors are compen-
sated for by adding a statistical intensity model, this approach
can produce very accurate and robust results [4]—[9].

Many of these atlas- and intensity-based methods use a
global intensity model to determine whether a voxel belongs
to the foreground or background class [5]-[9]. However, most
brain structures have one or more neighbors with similar in-
tensity characteristics, which results in partially overlapping
foreground and background distributions. Background voxels
with foreground intensities (or vice versa) will, therefore, be
mislabeled by the intensity model, unless the atlas information
is very strong. As a result atlas- and intensity-based methods are
unsuited to segment structures with complex, spatially varying
intensity patterns like the cerebellum (Fig. 1). A large number
of background voxels at the interface with the cerebrum and the
brainstem will be considered as foreground. This limits the ap-
plicability of atlas- and intensity-based techniques. Structures
with relatively simple intensity patterns like the hippocampus
show limited overlap, and can, therefore, usually be accurately
segmented. But when applied to the hippocampus, atlas- and
intensity-based methods remain vulnerable to registration er-
rors that push the atlas into background areas like the enthorinal
cortex, amygdala, or parahippocampal gyrus (Fig. 1).

One way to overcome these limitations is by combining atlas
registration with a local intensity model that can describe spa-
tially varying intensity distributions [4], [10]. More recent work
has shown the potential of modeling local image appearance of
brain structures with high-dimensional feature vectors of Haar
filters or Gaussian derivatives at different scales [11]-[16].
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Fig. 1. Manually segmented T1-weighted images of a cerebellum and a hip-
pocampus (both in sagittal view) together with the intensity distributions sam-
pled from the structure (solid red curves) and background (dashed black curves).
The cerebellum distribution overlaps with the intensities of the cerebrum (1) and
brainstem (2). In the hippocampus image background voxels from the amygdala
(3) and parahippocampal gyrus (4) have similar intensities as the foreground. (a)
Cerebellum. (b) Intensity distribution cerebellum. (c) Hippocampus. (d) Inten-
sity distribution hippocampus.

In this paper, we present a segmentation method that com-
bines atlas-based segmentation with multi-feature appearance
models. The proposed method uses multiple atlas registrations
to construct a spatial probability map that models the location
of the brain structure in an unlabeled MR image. The appear-
ance of the structure is described by a voxel classifier based on
Gaussian scale-space features. The smoothness of the result is
controlled with a regularization term. The spatial, appearance,
and regularization terms are then combined in a posterior proba-
bility function that can be globally maximized using graph cuts
[17], [18].

This work is closest related to the hybrid discriminative/gen-
erative segmentation method presented in [14], which describes
a combination of an appearance model and a statistical shape
model. The appearance model is implemented with a boosting
technique that uses approximately 5000 image and location fea-
tures to describe local image information derived from a manu-
ally labeled training set. The shape model encourages segmenta-
tions that have a similar shape as the training images. In contrast,
in our method this role is performed by the spatial probability
map, which benefits from the accuracy and robustness of mul-
tiple atlas registrations.

The method is evaluated by segmenting the cerebellum and
hippocampus in two MRI datasets that were acquired with
different scanners and sequences. We determined its accuracy
by comparing the results to manual segmentations. The perfor-
mance of the method was also compared with that of two other

techniques based on atlas registration [19] and atlas registration
plus an intensity model [7].

II. METHOD

The segmentation of an unlabeled target image is equivalent
to finding the label field f with the maximum posterior proba-
bility given the image information i

f= argmfaxp(ﬂi). (1

As we will consider binary segmentations, f is a vector con-
taining a label f,,, € {0,1} for every voxel m in the set M of
voxel locations in the image. Vector i consists of the intensity
values 7, for all voxel locations M.

Explicitly modeling the joint posterior probability p(f]i)
would be feasible only for the smallest of images because of the
exponential amount of possible label configurations. However,
we can simplify the computation of p(f|i) by assuming that
the label f,,, conditioned on the image intensities i depends
only on the labels of its neighbors n € A/,,,. This allows us to
approximate (1) as a Discriminative Random Field (DRF) with
one- and two-voxel clique potentials [20], [21]
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in which we shall assume the terminology of [20], [21] and call
A(fm,1) the association potential and I( f,,, f.,1) the interac-
tion potential. \; is a weight parameter that scales the associ-
ation potential with respect to the interaction potential. Z is a
constant that normalizes the summed posterior probabilities of
all possible label configurations to one. As we are only inter-
ested in the label configuration f that gives the maximum poste-
rior probability, we can disregard this term in the optimization
of (2). The association potential is proportional to the log prob-
ability that a single voxel assumes a foreground or background
label, given all intensity values of the image. This term is based
on statistical models of the brain structure’s location and ap-
pearance. The interaction potential models the relation between
two neighboring voxels, given i. In this work, it is implemented
as a regularizer that promotes piecewise smooth segmentations.

In Section II-A, the association potential is described, which
consists of three components: an appearance model, a spatial
model, and a global prior term, which will be detailed in sep-
arate subsections. Subsequently, the interaction potential is de-
scribed. Finally, the section is completed with an explanation of
the methods used to compute the maximum a posteriori solution
and to select the model parameters.

A. Association Potential

In this work, the association potential has the following form:

A(fm,1) = Inpa(fmli) (©)

in which p4 is the association probability function that can be
written as
_ pgp(fm) ) pmodel(fm Ii)

pa(fli) = o . )




In this equation pmodel(fm|i) is a probability function that con-
tains the spatial and appearance models. p,,(f) is a global
prior term which affects the probability of foreground voxel la-
bels in the entire image. Z 4 is the constant that normalizes the
summed foreground and background probabilities

Za = pgp(fm = 0) - Pmodel(fm = 0[i)
+pgp(fm = 1) 'pmodel(fm = 1|i)

The model term pyodel( fm|i) is defined as

_ Papp(fm|£m(i)) ) pg\z (fm)

Zmodel

pmodcl(fm|i) (5)
in which papp,(fml€,, (1)) is an appearance model probability
map, based on an F-dimensional vector &,,(i) of appearance
features extracted from the image in the neighborhood of m. It
describes the probability of label f,,,, based on the appearance at
location m. ps(f) is a spatial probability map, which records
the probability of encountering label f,, at voxel location m
according to a spatial model. A, determines the balance between
the spatial and appearance models. Zy,o4e1 1S the constant that
normalizes the summed probabilities to one

Zmodel = papp(fm = 0|£m(i)) : pi\z (fm = 0)

+papp(fm = 11§, (1)) 'pg\z(fm =1).

B. Appearance Model

The appearance model papp(fml€,. (1)) is constructed for
the unlabeled target image u by applying a k-nearest-neighbor
(knn) voxel classifier operating in the F'-dimensional feature
space. The classifier is trained by extracting foreground and
background samples from a set of JJ manually labeled training
images 7 = {t1,...,ts}. The probability that a voxel with a
feature vector £,,, has class label f,, is given by

u; . ky,, (€,(1) +1
Pl (i) = P D)L

in which &y, (€,,(i)) counts the number of training samples
with label f,,, among the k nearest neighbors of the point €, (i)
in the F-dimensional feature space. The superscript (u;7) is
used throughout this paper whenever it is important to explic-
itly specify the target image and the training set. Since the knn
classifier makes no assumptions about the distribution of €, (i),
it can model complex decision boundaries and has been shown
to be effective in brain structure segmentation [11].

We used a moderated knn instead of the standard expression
k.. (€,.(1))/k to ensure that no voxel labels could be “vetoed”
by the appearance model [22]. The foreground samples were ob-
tained by random sampling from all voxels that were labeled as
part of the structure of interest. An equal number of background
samples was randomly extracted from a band around the manual
segmentation. In all experiments k£ was set to 10, and we used
a fast implementation based on approximate nearest neighbor
searching (with an error bound € of one) [23].

The appearance was modeled with Gaussian scale-space fea-
tures. These were a Gaussian-filtered version of the original
image, first- and second-order Gaussian derivatives in all axis
directions, gradient magnitude, Laplacian, Gaussian curvature,
and the three eigenvalues of the Hessian. Including the original

(6)
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intensity values, we used 1 + 16n,, features for classification
(with n,, the number of scales). The features were independently
standardized to zero mean and unit variance. Unlike other seg-
mentation methods that use high-dimensional feature vectors
(for example, [11] and [13]), we did not include location fea-
tures; this information is introduced in the model by the spatial
component.

A subset of the most relevant image descriptors was found
with sequential forward feature selection, followed by sequen-
tial backward selection. In this process, features were added
until the area under the ROC curve no longer increased. Then
features were iteratively removed until the performance started
to deteriorate. The feature selection was trained on one half of
the .J training images and its performance was estimated on the
other half.

The foreground sample fraction, extent of the background
sample area, and the feature scales, were chosen differently for
the different image sets and brain structures for which the ap-
pearance model was constructed. Their values can be found in
Section III-B.

C. Spatial Model

The spatial model was constructed by non-rigidly registering
the J training images to the unlabeled target image u. The la-
bels of the training images were then deformed and averaged to
create a probability map ps(fr)

D () = 5 3 afi), ™
t; €T

In this equation ale) e {0,1} represents the atlas label of

training image #; deformed to the coordinate frame of target

image v and interpolated at voxel location m.

All registrations were computed by first finding an affine
transformation, followed by a nonrigid transformation pa-
rameterized by B-splines. The nonrigid registration step was
computed in a multi-resolution fashion with increasing B-spline
control point resolution. In all cases mutual information was
used as similarity measure. The brain-structure-specific regis-
tration settings are discussed in Section III-C. All registrations
were computed using the Elastix software [24].

D. Global Prior

As the appearance model is trained with an equal number of
samples for foreground and background, the resulting classifier
might not accurately reflect the prior class probabilities. Further-
more, the spatial model might exhibit under- or over-segmenta-
tion. The global prior term can compensate for these types of
errors by increasing or decreasing the posterior probability of a
foreground in the entire image

Pap(fm) = {og if fm =0

i, =1 ®)

1—-aq,
with parameter « between 0 and 1. If « has a value of 0.5, the
association probability p 4 will be unaffected. An « larger than
0.5 decreases the probability of a foreground label for all voxel
locations and consequently decreases the volume of the segmen-
tation, whereas a smaller value increases the foreground proba-
bility and the resulting volume.
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E. Interaction Potential

As the association potential for each voxel is independent of
the others, the resulting segmentation could be noisy. To in-
crease the probability of smoother segmentations the interaction
potential was implemented as follows:

. 0, if fm = fn
I(f: i) = { At B (), I fon # fr O

In this expression wy,, is a distance weight equal to
Amn/ e 7, dm.1, With dp, , the distance between voxel
locations m and n. B(A&,, »(i)) is the penalty term for as-
signing different labels to voxels m and n, which is small
if the appearance difference between the voxels is high. The
appearance difference is modeled by the Euclidean distance
A& n(i) between the F-dimensional feature vectors &, (i)
and &,,(i). The penalty is given by a logistic function

1
T T+exp(fo+ B1A&m (1))

in which 3y and (3; control the offset and slope of the term.

Equation (9) promotes smoother segmentations by de-
creasing the posterior probability of a label configuration in
which neighboring voxels have different labels. However, if
the feature space distance between neighboring voxels is large,
we assume that they belong to different structures. In that
case, the logistic function limits the reduction of the poste-
rior probability. This model is a multi-feature version of the
gradient-modulated Ising model commonly used in graph cut
segmentation methods [7], [25].

B(A&m.n(1))

(10)

F. Optimization and Parameter Learning

The posterior probability function p(f|i) described above
is completely defined by the voxel classifier result p,p,, that
models the appearance, the atlas registration result ps that
models the spatial probability, and a parameter vector 8. The
latter holds the model’s five free parameters: the associa-
tion weight \q, the spatial model weight Ao, the foreground
threshold «, and the parameters of the logistic interaction
model [y and f;.

The optimal value of these parameters ] depends heavily on
the quality of the appearance and spatial models, which is not
known. However, the model quality can be estimated with cross-
validation experiments using the manual segmentations of the
training images. In this work specifically, we chose 6 from a
predefined range of values © using exhaustive search, which is
explained in more detail in Section III-B.

Once the parameters have been chosen, a maximum a pos-
teriori (MAP) solution f can be found by converting (1) to an
equivalent energy function by taking the negative logarithm. As
shown in [26] this function can be globally minimized using
graph cuts [18]. In this work, we used the Maxflow algorithm to
perform this optimization [27].

III. EXPERIMENTS AND RESULTS

The method was tested by segmenting the cerebellum and the
hippocampus in T1-weighted images. The cerebellum exhibits
a complex, spatially varying intensity distribution, whereas the

hippocampus has a simpler uniform intensity pattern. To as-
sess the method’s ability to handle different MR sequences we
also segmented the hippocampus in Half-Fourier Acquisition
Single-Shot Turbo Spin Echo (HASTE) images with a lower
resolution. The segmentation accuracy was determined by com-
puting overlap and distance measures with respect to manual
segmentations in a leave-one-out experiment. The atlas- and ap-
pearance-based method was also compared to two alternative
techniques. The subjects and image data are described in more
detail in Section III-A. The parameter learning procedure and
data-specific implementation details are given in Section III-B.
The experiments are detailed in Section III-C. Finally, the re-
sults are described in Section III-D.

A. Image Data

We used two MR datasets from the Rotterdam Scan Study,
an image-based longitudinal cohort study on diseases among
the elderly. The subjects were taken from two different study
cohorts and selected to cover the cohorts’ variability in age,
sex, and global brain size (as measured with an automated brain
tissue segmentation method).

Set I consisted of 10 women and 8 men with a mean age of
74.2 £ 7.9 years. These images were made with a 1.5T General
Electric scanner. We used a 3D T1-weighted sequence (inver-
sion time 400 ms, repetition time 14.8 ms, time to echo 2.8 ms,
96 axial slices of 1.6 mm interpolated to 192 slices of 0.8 mm,
acquisition matrix 416 x 256, field-of-view 250 x 250 mm). The
final voxel size was 0.49 X 0.49 x 0.8 mm. The hippocampi
and cerebellum in set I were segmented by one observer (Y. Y.
Hoogendam) under supervision of a neurologist (T. den Heijer)
and a neuro-radiologist (A. van der Lugt). These structures were
delineated every other slice (in sagittal view for the cerebellum
and in coronal view for the hippocampus). Linear interpolation
was used to obtain segmentations for the skipped slices. We shall
refer to the hippocampus segmentations of this set as I-HC and
to the cerebellum segmentations as I-CRBL.

The low-resolution set II consisted of 9 women and 11 men
with a mean age of 74.6+£8.2 years. These images were acquired
on a 1.5T Siemens scanner with a custom-made 3D HASTE se-
quence (inversion time 440 ms, repetition time 2800 ms, 128
contiguous sagittal slices of 1.25 mm, acquisition matrix 192 x
256, field-of-view 256 x 256 mm). Two HASTE modules were
sequentially acquired after the inversion pulse (effective echo
time of 29 ms and 440 ms) of which the first was used in this
work. The final voxel size of these images was 1.25 x 1.0 x
1.0 mm. In these images the hippocampi were delineated on
coronal slices by two raters. Fifteen images were segmented by
an expert neurologist (T. den Heijer) and five by a trained ob-
server (Y. Y. Hoogendam) under supervision of a neurologist
(T. den Heijer). We shall refer to these images and their labels
as the II-HC set. The images from both sets were corrected for
nonuniformities using N3 [28].

B. Segmentation Procedure

The atlas- and appearance-based method was applied to the
I-CRBL, I-HC, and the II-HC sets. These segmentations were
performed in a leave-one-out experiment consisting of three

steps. First for every image t; € 7 an appearance model pSﬁpT’)
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1: for t; € T do

2: Construct appearance model pgﬁgﬂ)

3: Construct spatial model pg’m)

4: end for

5: for 6 € © do

6: for t; € T do

7: Compute posterior probability function

p(t3373) (@) based on pffﬁ,ﬁﬂ), P79 and @

8: Compute MAP label configuration f(‘”(o)

9: Compute DSI(f(t])(G),g(tj))

10: end for

11: end for

12: for t; € T do

13: Compute
a7ti) _ (k) (tk)
DSIT(6) = 1/N 34, e, DSI(E(6),8™)

14: Find 9 = arg maxg DSI(M(O)

15: Compute posterior function p(tfm)(é(m) based on
pg’;j;”rj)’ pgtj§7?)’ and 9(% t "

16: Compute MAP label configuration i'( “)(9( |

17: end for

Fig. 2. Parameter learning procedure. See text for more details.

and a spatial model pgtj T3) was created using the remaining sub-

jects’ scans 7; = T\ {¢;} as training images. Secondly, based
on these models, segmentations f () (6) were computed for all
parameter values # € © and all target images ¢; € 7. We then
measured the Dice similarity indices D.ST () (), g(1)) be-
tween f(*3) (@) and the manual segmentations g(*). This records
the segmentation accuracy as a function of the parameters 6
and target image ¢;. In the third step, the optimal parameters
@(tj) were selected for target ¢; by finding the parameters that
gave the highest mean similarity index computed over all other
images 7;. With these parameters the segmentation £015) (9(tj))
was computed. In this way, parameter learning for the segmen-
tation of ¢; was never based on spatial or appearance models
constructed in the coordinate system of £;. The whole proce-
dure is summarized in Fig. 2.

To create the appearance model for I-CRBL, 1% of the manu-
ally labeled foreground voxels in the training images were sam-
pled. The background samples were taken from a band up to 10
mm around the foreground. We used n, = 4 with equal loga-
rithmic intervals between 0.5 and 5 mm. The I-HC appearance
model was based on 5% of the foreground voxels and a back-
ground band of 4 mm. Five scales were used between 0.5 and
5 mm. The sampling parameters of II-HC were identical to those
of I-HC, but because of the lower resolution of the images we
used three scales between 1 and 5 mm.

The spatial models for [-CRBL and II-HC were based on mu-
tual information computed over the entire image. For I-HC the
registration was initialized with the deformation field computed
for the I-CRBL set, and further refined in a region of interest
around the hippocampus. The registration settings can be found
in the Elastix parameter database.!

The interaction potential was based on a 26-voxel 3D neigh-
borhood for the hippocampi. To reduce computation cost and
memory requirement of the graph cut we used a 6-voxel 3D
neighborhood for the cerebellum. For the same reason, separate

Thttp://elastix.isi.uu.nl/wiki
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subimages were created around the left and right hippocampus
and the cerebellum after construction of the spatial and appear-
ance models. These cropped images were based on bounding
boxes around the thresholded spatial probability maps of the
structures.

Computation time of a registration of one atlas image to the
target image was approximately 10 CPU min on a node of a
64-bit Linux cluster. As a result the construction of the spa-
tial model took 3 CPU h for I-CRBL, 6 CPU h for I-HC, and
3.5 CPU h for II-HC. The atlas registrations were performed
in parallel to reduce computation time. The computation of the
appearance model took approximately 0.5 CPU h per image of
I-HC, 1 CPU h per image of I-CRBL, and 2 CPU min per image
of II-HC. Constructing and maximizing the posterior probability
function was done within a second for the hippocampi and in 2
min for the cerebellum on a desktop computer. The parameter
learning took about four days for [-CRBL, two days for I-HC,
and one day for II-HC.

Separating the I-CRBL images in background, left and right
side voxels is a three-class segmentation problem that can not be
globally solved with graph cuts optimization [18]. Therefore, we
firstapplied the proposed method to label all voxels as cerebellum
and background. All cerebellum voxels were then classified as
left and right using the atlas. All DSI scores obtained during
parameter learning were computed for the entire cerebellum.

C. Experiments

The atlas- and appearance-based method was validated by
comparing the results of the leave-one-out segmentations to the
manual labelings. We used the following volumetric quality
measures. The Dice similarity index (DSI), defined as

2V(fng)
DSl = ————————— (11)
V(£)+V(e)
the Jacquard similarity index (JSI), given by
V(fng)
JSI = ————== 12
the relative volume difference (RV), defined by
V() - V(e)
RV=—r——>- (13)
V(g)

and the volumetric, two-way random, absolute agreement, intra-
class correlation coefficient (ICC) [29] between V (g) and V (f).
In these expressions, V(f) and V(g) are the volumes of the au-
tomated segmentation f and the manual segmentation g.

We also computed two surface-based measures: the max-
imum and mean surface distance D,.x and Dean. The
maximum distance is given by

Dmax = max {6(f7g)76(gf)} (14)

with §(f, g) a set that contains the distances between every sur-
face voxel in automated segmentation f, and the closest surface
voxel in the manual segmentation g. The mean surface distance
is defined by

Drﬂean =

5(f,g) + 0(g. f)
2 (15)
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TABLE 1
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EVALUATION MEASURES FOR THE ATLAS- AND APPEARANCE-, ATLAS- AND INTENSITY-, AND ATLAS-BASED METHODS. FOR ALL SCORES EXCEPT THE ICC
MEAN, STANDARD DEVIATION, AND RANGE ARE LISTED. P-VALUES WERE COMPUTED USING A KRUSKAL-WALLIS SIGNED RANK TEST WHICH TESTS THE
HYPOTHESIS THAT ALL THREE MEDIAN SCORES ARE EQUAL

atlas&appearance atlas&intensity atlas KW-test
I-CRBL
DSI 0.9544-0.008 [ 0.925 ; 0.963] 0.93740.013 [ 0.900 ; 0.953] p < 0.001
JSI 0.91140.015 [ 0.861 ; 0.928] 0.88240.023 [ 0.818 ; 0.911] p < 0.001
RV 0.00340.039 [-0.119 ; 0.099] 0.00740.057 [-0.145 ; 0.121] p =055
ICC [95%CI] 0.912 [0.853 ; 0.954] 0.817 [0.671 ; 0.902] -
Dmean, mm 0.5040.10 [0.38 ; 0.79] 0.6840.15 [0.50 ; 1.09] p < 0.001
Dinaz, mm 7.354+3.10 [3.28 ; 16.91] 7.35+1.92 [3.90 ; 10.74] p=0.68
I-HC
DSI 0.87040.017 [ 0.829 ; 0.899]  0.867+0.018 [ 0.814 ; 0.907]  0.858+0.017 [ 0.817 ; 0.892]  p = 0.008
JSI 0.771£0.026 [ 0.708 ; 0.816]  0.766+0.028 [ 0.686 ; 0.830]  0.752+0.027 [ 0.691 ; 0.804] p = 0.008
RV 0.03140.092 [-0.122 ; 0.244]  0.016£0.096 [-0.133 ; 0.273]  0.00010.079 [-0.156 ; 0.194] p=034
ICC [95%CI] 0.633 [0.391 ; 0.793] 0.609 [0.354 ; 0.779] 0.724 [0.522 ; 0.849] -
Dmean, mm 0.3440.06 [0.23 ; 0.53] 0.35+0.64 [0.21 ; 0.58] 0.36+0.06 [0.24 ; 0.52] p=035
Dmaz, mm 3.691+0.99 [1.93 ; 5.45] 3.86+0.97 [2.33 ; 6.33] 3.53+0.93 [2.18 ; 5.52] p =034
1I-HC
DSI 0.8654-0.022 [ 0.818 ; 0.908]  0.864+0.028 [ 0.786 ; 0.910]  0.83540.035 [ 0.736 ; 0.892] p < 0.001
JSI 0.76240.034 [ 0.692 ; 0.831]  0.761£0.043 [ 0.647 ; 0.834]  0.71840.051 [ 0.582 ; 0.805] p < 0.001
RV 0.01140.109 [-0.218 ; 0.268]  0.015+0.116 [-0.226 ; 0.255]  0.02840.167 [-0.209 ; 0.412] p =054
ICC [95%CI] 0.797 [0.647 ; 0.887] 0.733 [0.548 ; 0.850] 0.485 [0.205 ; 0.691] -
Dinean, mm 0.384+0.08 [0.27 ; 0.62] 0.38+0.09 [0.25 ; 0.69] 0.46+0.11 [0.27 ; 0.77] p < 0.001
Dmaz, mm 4.8911.77 [2.56 ; 9.39] 5.02+1.63 [2.36 ; 9.01] 4.80+1.61 [2.50 ; 8.95] p=0.79

with §(f, g) the mean of set §(f, g) computed over all surface
voxels of f.

To ascertain whether the multi-feature appearance model im-
proves results compared to a model based on MR intensities
only, we also segmented the I-HC and II-HC images with the
atlas- and intensity-based method published in [7]. This method
combines a spatial model, an MR intensity model, and a regu-
larizer in an energy framework that is optimized by graph cuts.
I-CRBL was not segmented with this method because its in-
tensity model cannot adequately separate the structure’s fore-
ground and background intensities. The results were compared
with the manual segmentations using the quality measures listed
above.

The atlas- and intensity-based segmentations were obtained
using the same spatial model as the atlas and appearance re-
sults. The intensity model for the target image ¢; was based
on a Parzen classifier trained on intensity values extracted from
the remaining manually labelled images 7;. Finally, we used an
identical regularizer as in [7]. The model described in [7] did
not include a global prior p,,, so we added a similar term to
the atlas- and intensity-based method. The resulting model had
three free parameters (equivalent to the A1, A2, and «), which
were optimized in the way described in Section III-B.

To assess the added value of the appearance model and the
interaction potential, we also compared the performance of the
proposed method to that of a multi-atlas-based segmentation
[19]. This method was applied to all three datasets and validated
using the same quality measures.

The atlas-based segmentations were computed by thresh-
olding the spatial model pgtj 3) at value . This threshold value
was chosen based on the training data using a similar procedure
as described in Section III-B. We chose to select the threshold
based on the training data instead of using a fixed value of 0.5,
to make the results better comparable to the proposed method
with its global prior pg, term.

All scores are reported as mean =+ standard deviation
[min; max]. These statistics were computed over the left-

and right-side structures of all images, so N was 36 for the
I-HC and I-CRBL sets, and 40 for the II-HC set. We used
Kruskal-Wallis signed rank tests to ascertain whether the atlas-
and appearance-, atlas- and intensity-, and atlas-based methods
had equal median scores. Additionally, the volume estimates
were evaluated by plotting the automatically measured volumes
against the manual volumes, and fitting a linear model through
this data using linear regression.

Furthermore, we also computed the method’s accuracy when
using a smaller training set. For this purpose, set I was randomly
divided in two folds of nine subjects each. One fold was used as
training set to segment the other fold and evaluation scores were
computed. Subsequently, training and test sets were switched to
obtain quality measures for the other nine subjects. These cross-
validation experiments were then repeated for four alternative
combinations of two folds and averaged over the five draws. The
resulting summary scores were averaged over the 36 left- and
right-side cerebella and hippocampi, and compared to the results
of the previous experiment using a Wilcoxon signed rank test.
This should give an indication whether the proposed method can
also produce accurate results with a smaller training set.

Finally, to assess the robustness of the parameter learning pro-
cedure, we analyzed how the accuracy of the segmentations de-
pended on the parameters. We visualized this relation making
plots of the average Dice similarity index as a function of two
parameters, while keeping the other three parameters at their op-
timal values. These optimal settings were defined as the param-
eter values that gave the highest average DSI. This experiment
was performed for the I-CRBL and I-HC sets, which resulted
in two sets of plots. As a reference we computed the maximum
possible DSI by overtraining. This was done by selecting for
each target image the parameter settings that gave the highest
DSI.

D. Results

Table I shows the quality scores of the atlas- and appearance-,
atlas- and intensity-, and the atlas-based models for all three val-
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Fig. 3. Boxplots of the different methods’ DSI scores measured in the three validation sets. (a) I-CRBL. (b) I-HC. (c) II-HC.
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Fig. 4. Scatterplots of the volumes measured with the atlas- and appearance-based method versus the manually measured volumes for the three validation sets.
The regression lines are shown in solid red and the perfect segmentation as a dotted black line. (a) I-CRBL. (b) I-HC. (c¢) II-HC.

idation sets. Fig. 3 compares the different methods’” DSI scores
per dataset. When looking at the I-CRBL, the atlas- and ap-
pearance-based method yielded higher scores across the board
compared to using the atlas alone. The performance of all three
methods is very high on the I-HC set, although the atlas-based
method never produces the best result. In the II-HC set the atlas-
and intensity- and atlas- and appearance-based methods both
perform better than the atlas-based method, but the difference
between these two methods is small.

Fig. 4 shows scatter plots of the volume of the manual seg-
mentation versus that of the atlas- and appearance-based seg-
mentation. The regression coefficients of the linear model fitted
on the measurements by all methods are shown in Table II. The
atlas- and appearance-based model generally has the slopes that
are closest to one, but all the automated methods have the ten-
dency to underestimate large, and overestimate small volumes
for the I-HC and II-HC datasets.

Fig. 5 shows the probability of encountering a foreground
voxel in the two images from Fig. 1 according to the appearance
model. Compared to the one-dimensional intensity distributions
of Fig. 1, the foreground and background appearance distribu-
tions exhibit a much smaller overlap. The appearance model rec-
ognizes neighboring structures like the brainstem and the amyg-
dala as background in Fig. 5(b) and (d). The majority of false
positives are found further away from the structures, outside the
band from which the background appearance was sampled. But
these errors are compensated for by the spatial model, which
will assign a zero foreground probability to these voxels.

TABLE II
COEFFICIENTS OF THE LINEAR MODELS THAT MAP THE MANUAL VOLUME TO
VOLUME MEASURED WITH THE ATLAS- AND APPEARANCE-, ATLAS- AND
INTENSITY-, AND ATLAS-BASED METHODS

atlas&appearance  atlas&intensity atlas
I-CRBL
Intercept, ml 4.0 9.0
(CI1%95) (-5.4;13.4) (-4.4;22.5)
Slope 0.94 0.86
(C1%95) (0.79;1.09) (0.65;1.08)
I-HC
Intercept, ml 1.4 14 1.1
(CI%95) (0.8;2.0) (0.8;2.1) (0.6;1.7)
Slope 0.54 0.51 0.60
(C1%95) (0.32;0.76) (0.28;0.74) (0.41;0.79)
II-HC
Intercept, ml 1.0 1.5 2.2
(CI1%95) (0.5;1.6) (1.0;2.0) (1.7;2.8)
Slope 0.69 0.51 0.32
(C1%95) (0.52;0.86) (0.40;0.69) (0.16;0.49)

Visual comparison of the results showed that the addition
of an intensity- or appearance-based component corrects small
under- and oversegmentations caused by registration errors (see
Fig. 6). But the atlas- and intensity-based method has difficul-
ties dealing with cases where the registration crosses over to
neighboring gray matter regions. As can be seen in Fig. 7(c),
the intensity model mistakes these areas for parts of the fore-
ground, which further deteriorates the results. The appearance
model recognized that these areas are background and corrected
most of these errors [Fig. 7(b)] This accounts for the removal of
the two outliers shown in Fig. 3(c).
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Fig. 5. Manually segmented T1-weighted images of a cerebellum and a hip-
pocampus (sagittal view) together with the foreground probability according
to the appearance model (higher intensities represent higher probabilities). (a)
Cerebellum. (b) Appearance model cerebellum. (¢) Hippocampus. (d) Appear-
ance model hippocampus.

Fig. 6. Coronal slice through the segmentations of the same subject from the
II-HC set. (a) Manual. (b) Atlas and appearance. (c) Atlas and intensity. (d)
Atlas.

However, in the absence of large registration errors the ef-
fect of the intensity and appearance components are compa-
rable. This is especially apparent in set I[I-HC, where in a small
majority of cases the atlas and intensity model outperforms the
atlas and appearance model [Fig. 3(c)]. The significant p-value
of the Kruskal-Wallis test of the DSI scores listed for this val-
idation set is purely due to the differences between the atlas-

Fig. 7. Coronal slice taken from the II-HC set showing a large over—segmen-
tation by the atlas- and intensity-based model. The atlas- and appearance-based
model avoids these errors. (a) Manual. (b) Atlas and appearance. (c) Atlas and
intensity.

Fig. 8. Sagittal image showing an over-segmentation of the I-CRBL set caused
by the spatial model that is not compensated for by the appearance model. (a)
Manual segmentation. (b) Atlas- and appearance-based segmentation.

based method and the other methods. Unsurprisingly, a post-hoc
Wilcoxon signed rank test shows no significant difference be-
tween the DSI scores of the atlas- and intensity-, and atlas- and
appearance-based methods.

The results of -CRBL showed some cases of over-segmenta-
tion at the posterior border with the skull, caused by registration
errors in this area. The proposed method is unable to compen-
sate for these errors as high-intensity voxels in the fatty parts of
the skull were considered to be foreground by the appearance
model. An extreme example can be seen in Fig. 8.

When segmenting the I-CRBL set with a smaller nine-sub-
ject training set we obtained DSI and RV scores of
0.95240.009 [0.927; 0.963] and 0.007+0.038 [—0.110; 0.092].
The results obtained with the 17-subject training set listed in
Table II were 0.954 + 0.008 [0.925; 0.963] and 0.003 +
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Fig. 9. Average Dice similarity index computed over all target images as a function of two parameters. The other three parameters were set to the values that gave
the highest average similarity index. For [-.CRBL only one value of 3; was considered during parameter learning. (a) I-CRBL. (b) I-HC.

0.039 [—0.119; 0.099]. These differences in DSI and RV were
statistically significant at p-values of < 0.001 and 0.002, albeit
very small. For I-HC a smaller training set resulted in a DSI of
0.86440.026 [0.749 ; 0.898] versus 0.870+0.017 [0.829; 0.899]
and an RV of 0.031 £ 0.087 [—0.110; 0.231] versus
0.031 £ 0.092 [—0.122; 0.244]. The difference in DSI was
statistically significant at p < 0.001, but the difference in RV
was not (p = 0.7).

Fig. 9 shows the average DSI as a function of two model pa-
rameters while keeping the other three at the optimal values.
For I-CRBL these optimal parameter settings were a = 0.6,
A = 03, X =07, 6 = 1.0, B> —10. Most param-
eter settings around these values produced a score of 0.96 or
higher, which is close to the accuracy of 0.962 obtained in the
leave-one-out experiments. Since the parameter learning for the
cerebellum was performed using DSI scores computed over the
entire structure, this is a little higher than the score listed in
Table I, which was computed over the left and right sides sep-
arately. The average maximum DSI for the I-CRBL set was
0.965.

The optimal settings for the I-HC set were a« = 0.55, A; =
0.1, A2 = 0.9, 51 = 0.5, B2 = 0. Although the results are not as
stable as for I-CRBL, there are several settings that give a DSI
of at least 0.87, which was the score obtained in Table I. For the
I-HC set the average maximum SI was 0.878.

IV. DI1SCcUSSION AND CONCLUSION

The work presented in this paper demonstrates that atlas- and
appearance-based models can produce robust and accurate seg-
mentations of brain structures with both simple and complex
intensity distributions. The appearance model has an increased
capability to recognize neighboring background structures with
overlapping intensity distributions. As a result, the proposed
method can handle structures as different in shape and appear-
ance as the hippocampus and the cerebellum. The improved sep-
aration of foreground and background also makes the method
more robust to registration errors. This increases its potential for
application to large-scale brain MRI studies compared to atlas-
and intensity-based methods like [5]-[8].
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The overall segmentation accuracy of the atlas- and appear-
ance-based method with respect to manual labelings is good.
The DSI and JSI scores on the three validation sets consid-
ered exceeded 0.85 and 0.75. The mean distance error was
of the order of the voxel size or smaller. This is comparable
to the results of alternative methods reported in the literature
[81-[10], [12], [13], [16], [19], [30]. The atlas and appearance-,
and atlas-based segmentations did show some large deviations
from the manual labellings, especially in the I-CRBL set. This
was caused by inclusion of large fissures which were left out of
the manual segmentation, while smaller fissures were included
by the observer. As this is an error that is very particular to the
cerebellum, we expect improved D,y Scores when the method
is applied to other structures.

The volume estimates derived from the proposed segmen-
tation method showed little to no bias. The standard deviation
of the volume measurements were 4% and 10% for the cere-
bellum and hippocampus segmentations, respectively. The
scatter plot of the automated and manual cerebellar volumes
showed no distinct volume-dependent biases. However, for
the hippocampal volume measurements there is a tendency
to underestimate large, and overestimate small volumes. This
bias is likely to be caused by the multi-atlas registration: the
atlas-based segmentation without appearance model has a
stronger bias towards an average volume. The volumetric ICC
was 0.912 for the cerebellum and 0.633 for the hippocampus in
set I. The II-HC showed a higher ICC of 0.797, although its RV
estimates were quite comparable to that of the I-HC set. This
improvement might partly be explained by the larger range of
hippocampal volumes in set II.

The atlas- and appearance-based method showed increased
robustness to large registration errors. The appearance model
can correct registration errors of the hippocampus when they
cross over to gray matter areas like the enthorinal cortex or
parahippocampal gyrus. The atlas- and intensity-based model
cannot distinguish these regions from foreground. Large misreg-
istrations occurred in about 90% of the cases in both I-HC and
II-HC. This is comparable to the error rate found in an experi-
ment on the entire cohort from which the II-HC set was taken
[7]. Inclusion of an appearance model would decrease this error
rate.

In images where the atlas-based registration did not show
any large errors, the proposed method performed better than
the strictly atlas-based method as it corrects small registration
errors. However, in these cases the atlas- and intensity-based
method gave comparable results. As long as the spatial model
does not venture into the gray matter outside the hippocampus,
our experiments suggest that intensity information alone is suf-
ficient to improve the results. Since 90% of the cases had an
accurate spatial model, the increased robustness of the appear-
ance model had limited impact on the mean performance scores.
For I-HC the spatial model was of such high quality that the
atlas-based method performs almost comparably to the methods
with additional components.

The segmentation results depend on the five free parameters
included in the model. Our experiments showed that it is pos-
sible to learn a set of values from the training data that give
results close to the maximum possible accuracy. This shows

that the performance of the different model components on the
training set is sufficiently representative for their performance
on the target image. Furthermore, the accuracy remains rela-
tively stable when the parameters were varied. This suggests
that a less expensive parameter learning procedure could also
give good results.

A limitation of the atlas- and appearance-based method is
its dependency on training data that is sufficiently representa-
tive of the unlabeled target image. We have shown that the ap-
pearance model can model two different MR sequences, but it
needs specific training data to accurately perform the classifi-
cation and feature selection. Also the parameter learning pro-
cedure depends on the training data to estimate the quality of
the model components. The proposed method is therefore pri-
marily suitable for accurate and automated segmentation of im-
ages obtained in large neuroimaging studies where it pays off to
invest in a specific training set. However, the experiment with a
smaller training set suggests that you would not need the amount
of training images available for this work.

The computational costs of the proposed method are high.
However, the atlas registrations required for the spatial model
can be parallelized. Moreover, the extra effort results in a large
gain in accuracy and robustness compared to a single atlas regis-
tration [19]. The knn classifier is relatively expensive to apply to
a target image, especially compared to classifiers like AdaBoost
which are very fast once they have been trained [13]. We chose
this method because it is flexible and easy to implement, but it
could be substituted for a faster classifier, as long as it produces
a probabilistic output.

The major advantage of graph cuts optimization, its ability to
find a global optimum in finite time, can only be achieved for
binary segmentation problems. To solve the multi-label problem
of segmenting the left and right cerebellum, we had to resort to
a two-step approach that used the atlas to separate the sides.
Alternatively, multi-label segmentation can be performed using
combinatorial optimization methods like Fast PD [31] or alpha
expansions [18]. These techniques are not guaranteed to find a
global optimum, but do appear to give robust results in practice.

Contrary to most previously published appearance-based seg-
mentation methods we did not include spatial location as a fea-
ture [11], [13], [14], [16]. In this way no spatial information was
contained in the appearance model. Fig. 5 and the high quality
of the segmentations suggests that an appearance model without
any spatial features is adequate, at least for the structures con-
sidered in this work. Jointly modeling appearance and location
could help to prevent errors like the cerebellum over-segmenta-
tion shown in Fig. 8. On the other hand much of the spatial vari-
ation within the cerebellum occurs at a relatively small scale. As
aresult, it would be very hard to align the training images accu-
rately enough to capture these patterns in the classifier’s training
set.

As we had strong spatial and appearance models, we decided
to include a relatively simple interaction potential. As shown in
[20], [21], the DRF framework can easily be extended to incor-
porate a more complex interaction potential based on a logistic
classifier that gives individual weights to all feature differences.
In essence, this is a classifier in its own right that labels voxel
combinations instead of individual voxels. On the other hand,
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this model has more parameters which would require a more
complex parameter learning strategy.

In conclusion, we have presented a brain structure segmenta-
tion method based on atlas registration and multi-feature classi-
fication. Because of the classifier’s ability to model appearance
it can segment structures with both complex and simple inten-
sity distributions. Its accuracy with respect to manual segmen-
tations is good, and comparable or better than existing segmen-
tation methods. Furthermore, the appearance component makes
the method more robust to large misregistration compared to
atlas- and intensity-based methods.
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