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ABSTRACT

Segmentation of thrombus in abdominal aortic aneurysms is complicated by regions of low boundary contrast and by
the presence of many neighboring structures in close proximity to the aneurysm wall. This paper presents an automated
method that is similar to the well known Active Shape Models (ASM), which combine a three-dimensional shape model
with a one-dimensional boundary appearance model.

Our contribution is twofold: First, we show how the generalizability of a shape model of curvilinear objects can be im-
proved by modeling the objects axis deformation independent of its cross-sectional deformation. Second, a non-parametric
appearance modeling scheme that effectively deals with a highly varying background is presented. In contrast with the
conventional ASM approach, the new appearance model trains on both true and false examples of boundary profiles. The
probability that a given image profile belongs to the boundary is obtained using k nearest neighbor (kNN) probability den-
sity estimation. The performance of this scheme is compared to that of original ASMs, which minimize the Mahalanobis
distance to the average true profile in the training set.

A set of leave-one-out experiments is performed on 23 datasets. Modeling the axis and cross-section separately reduces the
shape reconstruction error in all cases. The average reconstruction error was reduced from 2.2 to 1.6 mm. Segmentation
using the kNN appearance model significantly outperforms the original ASM scheme; average volume errors are 5.9% and
46% respectively.
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1. INTRODUCTION

An abdominal aortic aneurysm (AAA) is an enlargement of the infrarenal abdominal aorta, resulting from weakened
arterial walls. Once present, AAAs continue to enlarge and, if left untreated, become increasingly susceptible to rupture,
which usually results in death. Worldwide, approximately 100,000 surgical interventions for AAA repair are performed
each year, of which at present 30 % are endovascular. After endovascular aneurysm repair, in which a synthetic graft is
placed inside the aorta, the process of aneurysm shrinkage, ongoing aneurysmal disease, and damage or fatigue of graft
material may result in leakage, graft migration, and kinking or buckling of the graft, which can subsequently cause rupture
or occlusion. Careful and frequent patient follow-up is therefore required. 1 Patients are scanned every three to twelve
months, depending on the state of the aneurysm.

Changes in aneurysm volume form an important indicator for the risk of rupture. 2–4 The current gold standard for volume
assessment is Computed Tomography Angiography (CTA) with subsequent manual aneurysm delineation in each slice. 5

Manual segmentation is a time-consuming process — it takes an experienced operator around 30 minutes — and suffers
from inter- and intra-operator variations. Wever et al. 6 reported averaged inter-operator volume errors of 8.3% and intra-
operator errors, for two operators, of 3.2% and 5.8%.

To reduce analysis time and to increase reproducibility, automated segmentation would be of great value. However, throm-
bus segmentation in CTA images is a difficult task. The boundary can be obscured by surrounding tissue of similar gray
value, many neighboring structures induce strong edges in close proximity to the aneurysm wall, and the variable aneurysm
radius in combination with partial volume effects makes the boundary hard to distinguish even in the absence of neighbor-
ing structures. In addition, the size and appearance of aneurysms and neighboring structures vary considerably between
patients as well as in one patient over time. Figure 1 shows some examples of CTA slices, illustrating the diversity of
aneurysm and background appearance.
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Figure 1. Four CTA slices of different patients, with manually delineated aneurysms. The left image is taken before surgery, the
others are post-operative. The interior of the contour contains thrombus, contrast enhanced blood in the lumen and possibly endoleaks,
calcification, and — post-operatively — metal graft markers and attachment systems. Neighboring structures are the spinal column, at
the bottom of the images, blood vessels and intestines. All CTA images in this paper have been contrast stretched for better visibility of
the thrombus.

Most publications on computerized AAA segmentation have concentrated on segmentation of the contrast-filled lumen,
either in pre-operative7–15 or in post-operative CTA scans.16 The more difficult problem of thrombus segmentation
has less frequently been addressed. Wilson et al.17 claimed successful thrombus segmentation using an active surface
with the central lumen axis as a seed, but did not present an evaluation study. Subasic et al. 18 segmented the aortic
lumen using a three-dimensional level-set approach, but found that the method could not cope with the large regions
lacking boundary evidence in thrombus segmentation. They solved this problem using a combination of thresholding, edge
detection, morphological operations, and shape restrictions in the form of a distance map, favoring convex cross-sections.
A level-set was evolved in the resulting binary image to ensure a smooth object. The average segmentation error per slice
was 19.8%, which makes the method suitable for visualization purposes but not for accurate volume measurements.

Since one of the main problems in AAA segmentation is the incompleteness of boundary evidence, we believe that the use
of shape priors can achieve considerable improvement with respect to the approaches mentioned above. Several authors
have combined deformable models with statistical analysis of the shape variables in a training set. 19–21 Our approach is
based on the Active Shape Model (ASM) segmentation scheme as put forward by Cootes and Taylor, 21, 22 which combines
a landmark based statistical shape model with local appearance models near object contours. ASMs have been successfully
applied to various segmentation tasks in medical imaging.23–30

Conventional ASMs use a linear model generated from gray value profiles in training images to fit the shape model to
the image. Since AAAs have a diverse range of possible surrounding structures, which vary in location, shape, intensity
and texture, a linear model of gray level structure about the contours is not always able to find the true contour in a new
image. We have previously reported an interactive approach to AAA segmentation in which a shape model built of two
adjacent image slices is fitted progressively to successive slices, using gray value correlation between adjacent slices as a
fit measure.31 This approach is easily integrated with the current manual slice-by-slice segmentation. However, the use
of slice similarity features and a two-slice shape model results in propagation of errors and performance deteriorates with
distance from the reference contour.

In this work we present a three-dimensional approach using a statistical model of cylindrical shape variations, restricting
the deformation to in-slice landmark displacements. We discuss how an overconstrained model of a curvilinear object can
be generalized using the assumption that cross-section and axis deformations are uncorrelated, and we developed a novel
non-parametric appearance modeling scheme that effectively deals with a highly varying background. In contrast with
conventional ASMs, the proposed appearance modeling scheme extracts both boundary and non-boundary profiles from
the training set. The quality of fit of a given landmark to the local image structure, the probability that a given profile
corresponds to the aneurysm boundary, is determined using k nearest neighbors (kNN) probability density estimation.

The shape model is briefly discussed in Section 2.1. Section 2.2 describes the appearance model of ASM and our aug-
mented model, and Section 2.3 explains how the shape model is fitted to the image using these appearance models. Details
on how we apply the method to AAA segmentation are given in Section 2.4. Section 3 presents the results of a series of
leave-one-out experiments on 23 datasets. Discussion and conclusions are given in Sections 4 and 5.
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Table 1. Parameters of the segmentation scheme.

Shape model (Section 2.1)
n 1500 Number of landmark points
fv 0.99 Part of shape variance to be explained by the model, controlling the number of modes t (Eq. 6)
fc 3 Bound on eigenvalues λi (Eq. 9)
Gray value model (Section 2.2)
k 7 Patch length
nshift 2 Number of shifted examples on both sides of the contour (kNN model)
dshift 2 Amount of shift (kNN model)
knn 80 Number of neighbors to evaluate in kNN search (kNN model)
Fitting algorithm (Section 2.3)
ns 5 Number of new landmark positions to examine per iteration on either side of the current position
L 4 Number of resolution levels
N 5 Number of iterations per resolution level

2. METHOD

This section describes the segmentation scheme. Shape variations in the training set are described using a Point Distribution
Model (PDM).22 The shape model is used to generate new shapes, similar to those found in the training set, that are fitted
to the data using a model of local gray value structure.

2.1. Point Distribution Models

In PDMs, a statistical model of object shape and shape variation is derived from a set of s training examples. Each training
example is described by n manually or automatically identified landmark points that correspond between shapes. Variations
in the coordinates of these landmark points describe the variation in shape and pose across the training set.

A shape is described by its shape vector x containing all landmark coordinates, in three dimensions:

x = (x1, y1, z1, x2, y2, z2, . . . , xn, yn, zn). (1)

To maximize the specificity of the model and to reduce non-linearities in the shape distribution, the shapes are aligned
by rotation, translation, and scaling using Procrustes Analysis,32, 33 and transformed into the tangent space to the mean
shape.22

Principal Component Analysis (PCA) is applied to the aligned shape vectors. Hereto, the mean shape x, the covariance
matrix S, and the eigensystem of S are computed:

x =
1
s

s∑

i=1

xi (2)

S =
1

s − 1

s∑

i=1

(xi − x)(xi − x)T . (3)

The eigenvectors φi of S provide the modes of shape variation present in the data. The eigenvectors corresponding to
the largest eigenvalues λi account for the largest shape variation; a small number of modes usually explains most of the
variation. Each shape x in the set can thus be approximated by

x ≈ x + Φb (4)

where Φ consists of the eigenvectors corresponding to the t largest eigenvalues, Φ = (φ 1|φ2| . . . |φt). The t-dimensional
vector b contains the model parameters, indicating how much variation is exhibited with respect to each of the eigenvectors,

b = ΦT (x − x). (5)
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The total variance in the dataset is given by
∑

λi. The number t of modes in the model is chosen such that the model
captures a certain proportion fv of the total variance observed:

t∑

i=1

λi ≥ fv

∑

i

λi. (6)

A common problem in statistical shape modeling is that the model can be too specific to fit to new shapes properly, owing
to a limited amount of training data. This is often the case with three-dimensional models, where a large number of
landmarks is needed to describe a shape properly. We propose to generalize models of curvilinear structures like AAA
using the assumption that the cross-sectional shape is independent of the object axis. Both the cross-sections and the axes
are modeled separately and then combined into one model describing both deformations. Details are given in Section 2.4.

2.2. Gray value model

Fitting the shape model to a new image requires a measure of probability that a point belongs to the boundary. The objects
boundary appearance can be learned from the training set. To this end, gray value profiles of k pixels are sampled around
each landmark, perpendicular to the object contour.

In the original ASM formulation, a linear model is built from these profiles, similar to the shape model. The effect of
global intensity changes is reduced by sampling the first derivative and normalizing the profile. The normalized samples
are assumed to be distributed as a multivariate Gaussian, and the mean g and covariance matrix S g are computed. The
measure of dissimilarity of a new profile gs to the profiles in the distribution is given by the squared Mahalanobis distance
f(gs) from the sample to the model mean:

f(gs) = (gs − g)TS−1
g (gs − g). (7)

Minimizing f(gs) is equivalent to maximizing the probability that gs originates from the training profile distribution.

We previously showed that the Mahalanobis distance to the average training profile does not perform well in AAA boundary
localization for slice-by-slice segmentation.31 One of the shortcomings of this gray value model is that only the appearance
of the correct boundary is learned from the training set. Boundaries of neighboring structures may have similar appearance,
but that has no effect on the obtained quality of fit. Furthermore, the underlying assumption of a normal profile distribution
does not hold in the presence of distinct background structures of varying shape and brightness.

We propose to treat the position evaluation step in the ASM fitting as a classification problem. Again, gray value profiles are
sampled from the training set, but now a classifier is trained on both true and false examples of aneurysm contours. For each
landmark, one true example is sampled around the landmark and perpendicular to the contour, and 2n shift false examples
are sampled in the same direction, nshift displaced outwards and nshift displaced inwards. The first false example in one
direction is sampled at a distance dshift from the landmark, and subsequent examples are obtained by each time shifting
dshift with respect to the previous sample.

In a new image, the probability that a given profile lies on the aneurysm boundary is given by the posterior probability
from the classifier for that profile. In this work, a kNN classifier is used and the posterior probability is given by

P (boundary|gs) =
ntrue

knn
, (8)

where ntrue is the number of boundary samples among the knn nearest neighbors.

For the original ASM gray value model as well as for the new kNN gray value model the profiles are sampled at multiple
resolutions, to enable coarse-to-fine fitting. The finest resolution uses the original image and a sample spacing of one voxel,
the next resolution is the image convolved with a Gaussian kernel of width one and sampled with a spacing of two voxels,
and subsequent resolutions are obtained by doubling both the kernel width and the sample spacing. When the sample
spacing is doubled, the amount of shift dshift of the kNN model is doubled as well.
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2.3. Fitting procedure

In ASMs, the shape model is fitted to new images using a fast deterministic optimization scheme. The process initializes
with some plausible shape, usually the mean. For all landmarks, n s possible new positions are evaluated along the line
perpendicular to the contour, on both sides. The distance between the 2n s + 1 positions to evaluate depends on the level of
resolution and is equal to the sample spacing of the corresponding gray level model: at the finest resolution the distance is 1
voxel, at each subsequent resolution it is doubled. The optimal position is determined by one of the gray value models that
were discussed in Section 2.2. The current shape is translated, rotated and scaled such that the squared distance between
the landmarks and the optimal positions are minimized. Next, the optimal shape parameter vector b is computed using
Equation 5. Hard limits are applied to constrain the elements b i of b to plausible values:

|bi| ≤ fc

√
λi. (9)

This process is repeated a fixed number of N times, whereupon it is repeated at the next level of resolution.

This fitting procedure can encounter problems when segmenting objects with noisy or highly variable edge evidence,
since the objective function to minimize, the sum of squared distances, is sensitive to outliers. Modifications to the fitting
algorithm have been proposed to make it more outlier resistant. Rogers and Graham 34 have compared various robust
estimation techniques in the context of ASM search, including least median of squares, random sample consensus, and
weighted least squares fitting, where the weights can be determined either by image information or by the shape residual
distribution. Duta and Sonka26 suggested to detect outliers as points that induce an exceptionally large part of the total
amount of variation, and move them to the mean position. Hamarneh and Gustavsson, 27 Behiels et al.,30 and Mitchel et
al.28 proposed to use dynamic programming to favor landmark displacements that are smoothly varying between neighbors.

In our experiments we have applied dynamic programming regularization followed by a weighted least squares fit. Details
are given in Section 2.4.

2.4. Application to AAA segmentation

Landmarking strategy

The original CT-slices are perpendicular to the body axis and therefore give approximately perpendicular cross-sectional
views of the aorta. In our datasets, an aneurysm extends over 34 to 65 slices. We model 3D cylindrical shape variations,
restricting the deformation to in-slice landmark displacements. To build the shape model, a fixed number of slices n z

is interpolated between the beginning and end slice. An equal number of landmarks n xy is placed in each slice, along
contours that were drawn manually by an expert. In the absence of well-defined anatomical landmark points, landmarks
are equidistantly placed along the object contours. The starting point of a contour is the posterior point with the same
y-coordinate as the center of mass. Before the model is fitted to a new image, the user indicates the first and last aneurysm
slice, thus removing the need for scaling in the z direction. As a consequence, the shape vector contains only x and y
coordinates.

Handling small training sets

The generalizability of the model is increased by first modeling the axes and cross-sections separately and then combining
the two models, thus assuming that both types of shape variation are uncorrelated. To this end, s central axes and s
straightened shapes are extracted from the s aligned training shapes. Each axis contains one landmark per slice, defined
by the centroid of the contour in that slice. The straightened shapes have the same number of landmarks as the original
shapes and are formed by translating each contour such that its centroid is in the origin. PDMs are derived for both shape
distributions as described in Section 2.1.

The axis PDM now describes the shape variation with respect to the mean axis, while the straightened PDM describes
the variation with respect to the mean cross-sectional shape. To be able to combine the two models they need to be of
equal dimensions (2n). The 2n-dimensional modes of axis variation are obtained by translating the slices of the mean
cross-sectional shape such that their origin coincides with the landmarks of the deformed axes, and the total mean shape is
determined similarly by translating the mean cross-sectional shape to the landmarks of the mean axis. The two models will
in general not be linearly independent, therefore a second PCA is performed to remove any correlation between the axis
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and cross-sectional modes. The combined model is thus obtained by computing the principal components of the column
vectors of

(ΦcrossWcross|ΦaxisWaxis) (10)

where the Φ are concatenations of eigenvectors and W are diagonal weight matrices of the corresponding eigenvalues.

The resulting model contains at maximum 2(s − 1) modes, provided that s − 1 < n, while a model built from all shapes
directly would contain only s − 1 modes.

Initialization

The complexity of the images requires an accurate initialization. We have asked the user to draw the top and bottom
contours of the aneurysm manually. To aid the model in establishing the correct object axis an additional point is placed
in the approximate aneurysm center of the central slice. The shape model is iteratively fitted to these points using a
constrained ASM scheme, in which after each iteration the landmarks of the manually drawn slices are replaced to their
original position and the landmarks of the central slice are translated such that their average position coincides with the
manually identified center point. Alternatively, an automatic estimate of the luminal or aneurysmal axis or a — more easily
automated — lumen segmentation could be used for initialization.

Subsequently, a fixed number of slices is interpolated from the image, and the shape model is fitted at multiple resolutions to
optimally match the local image structure, given the two manually drawn contours. The segmentation process is constrained
by keeping the two manually drawn slices fixed.

Regularization

We have applied dynamic programming regularization 27,28, 30 to reduce the effect of outliers within a slice, but the land-
mark movements from slice to slice are unconstrained, as large shape differences can occur between slices. The effect of
outliers is further reduced by applying a weighted least squares fit 34 on the basis of image information. Equation 5 then
becomes

b = KT (x − x), (11)

K =
(
ΦTWTWΦ

)−1
ΦTWT W

where W is a diagonal weight matrix. Weights wi describe the certainty that the ith landmark is on its correct position,
and are chosen as the probability that a given profile is on the boundary. For the linear model that is

P (boundary|gs) = ce
−f(gs)

2 , (12)

with c a normalization constant that can be ignored in this case. For the kNN model the weights are given by the posterior
probability as defined in Equation 8.

3. EXPERIMENTS AND RESULTS

A series of leave-one-out experiments is performed on 23 routinely acquired CTA images from 23 different patients,
including 3 pre-operative and 8 post-operative scans. The remaining 12 scans are taken at follow-up ranging from 1 to 12
months. The scan resolution is 0.488× 0.488× 2.0 mm. Each image consists of circa 125 slices of 512× 512 voxels, of
which 34 to 63 slices contain aneurysmal tissue.

Unless mentioned otherwise, all parameters are kept fixed at the values given in Table 1.
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First mode

Second mode

Third mode

Fourth mode

Fifth mode

Sixth mode

−3
√

λi Mean 3
√

λi

Figure 2. The effect of varying each of the first six shape parameters individually (frontal view). The largest amount of variance across
the training set is caused by a curving of the axis, shown in the first two modes. The third mode describes aneurysms with a long or a
short proximal neck, while mode four and five reveal a buckling of the axis. Mode six shows some variations in cross-sectional shape
along the axis and distinguishes between aneurysms that have the greater part of the volume in the center or spread along the axis.
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Figure 3. (a) Root mean squared reconstruction error for all 23 datasets. The continuous lines show the leave-one-out error for a
normal three-dimensional shape model (gray) and for the combined model of axis and cross-section (black). The dashed lines denote the
corresponding error if the test image is added to the training set. Both normal models use 21 modes of shape variation, and the combined
models use 21 axis modes and 21 cross-section modes. Shapes are constrained using fc = 3. (b) Root mean squared segmentation error
for all 23 datasets, for the Mahalanobis distance based model (gray) and the kNN model (black).

3.1. Shape model evaluation

Figure 2 visualizes the first six modes of shape variation of the combined axis and cross-section model trained with all
23 datasets. The validity of the shape model is tested by fitting the model directly to the manual segmentations, which
gives an upper bound for the accuracy that can be obtained when the model is fitted to new image data. Figure 3a shows
the root mean squared landmark-to-contour error for all datasets. Modeling the axis and cross-section separately reduced
the reconstruction leave-one-out error in all cases; the average error was reduced from 2.2 to 1.6 mm. There is however
still a large discrepancy between the leave-one-out errors and the leave-all-in errors, suggesting that a larger training set is
needed to span the entire space of possible shapes.

3.2. Gray value model

Starting from the landmarks on the manually drawn contour, the optimal landmark positions according to the two gray
value models are determined, for varying n s. The distances from these points to the landmark positions provided by the
manual tracings are measured. The resulting root mean squared distances as a function of the size of the search region
are shown in Figure 4, together with the expected error for random landmark selection. For both gray value models, the
low-resolution model is more robust in large search regions, yet for accurate boundary localization if the true boundary
is within a few millimeters distance, the high resolution models are better suited. The difference in performance for low
and high resolution models is more pronounced for the kNN model. The kNN model performs significantly better than
the conventional ASM gray value model at all resolutions, but still the errors are quite large, suggesting that an accurate
initialization may be needed.

3.3. Segmentation

Figure 3b shows the segmentation results obtained using the two gray value models. The kNN model yields significantly
better results than the original ASM model (p < 0.00001 in a paired T-test). Average root mean squared errors are 2.5 and
8.3 mm (5.1 and 17 voxels). The relative volumes of overlap are 92% and 62%, and the average volume errors are 5.9% and
46%. There are two datasets in which the error obtained using the kNN model is larger than half a centimeter. An example
slice of both images is given in Figure 5. If these two problematic datasets are left out of consideration, the average error
of the remaining 21 datasets is 2.0 mm. The corresponding volume of overlap is 94% and the relative volume error 4.2%.
Note that the latter is the volume error as a percentage of the total volume enclosed by the aneurysm boundary, while
thrombus volume errors reported in literature6 are expressed relative to the pure thrombus volume, excluding the passable
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Figure 4. Root mean squared error of landmark positioning as a function of the length of the search region on either side of the contour,
for (a) the Mahalanobis distance, and (b) the kNN gray value model.

Figure 5. The two datasets in which the kNN method was unable to find an adequate segmentation. The dataset on the left combines
an extremely wide aneurysm with calcifications, which are usually found only at the boundary, inside the aneurysm. The reconstruction
error for this dataset was also large (dataset number 14 in Figure 3a). In the second dataset the aneurysm is embedded in other structures
with similar gray value for over 10 adjacent slices, while the total region comprised by the aneurysm and its surrounding structures
would be a plausible aneurysm shape. The first problem may be solved if more training shapes are available, the second case is clearly
one that this method, using only shape constraints and the gray values near the contour, cannot handle. This image requires very accurate
initialization or user interaction.

lumen. We estimate the relative thrombus volume errors of the obtained segmentations by subtracting the lumen volume,
obtained through thresholded 3D volume growing under expert supervision, and allowing for a 3.5% volume error in this
lumen segmentation.16 Under these assumptions, the thrombus volume error is 5.8% on average for the 21 successful
segmentations using the kNN model, which is comparable to the intra-operator errors reported by Wever et al. 6

Examples of segmented slices, randomly chosen from the 21 datasets that were successfully segmented, are shown in
Figure 6.

4. DISCUSSION

We have restricted the model deformation to in-slice landmark displacements and consider only in-slice gray value profiles,
while a full three-dimensional approach — allowing gray value modeling perpendicular to the object’s surface — could be
more appropriate in some applications. In the case of CTA images, which are in general highly anisotropic (in our images
the voxels are over 4 times larger in the z-direction), we do not expect a significant improvement in boundary localization
if the profiles would be sampled in three dimensions.

The combination of axis and cross-section models effectively increases the ability of the model to generalize to new images.
However, reconstruction errors as shown in Figure 3a are still quite large. Our current work focuses on extending the model
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Figure 6. Image slices taken randomly from the 21 successful segmentations, with the manually drawn contour (dots), the segmentation
obtained using original ASM (pluses) and the segmentation obtained with the kNN gray value model (continuous line). The kNN model
obtained a segmentation near the manual contour in all four cases. The original ASM gray value model tends to draw to the lumen
boundary, and finds a satisfactory segmentation only in the third image.

to incorporate other smooth deformations not observed in the training set, for example by adding artificial covariance as
was suggested by Wang and Staib.35

The improvement of the presented gray value model over the original ASM gray value model is twofold. First, not only the
appearance of the boundary but also the appearance of points near the boundary is learned from the training set. This raises
the question how many and which false examples should be taken into account. In our application, the first two shifted
examples (one on each side of the contour) made a large difference, while adding more examples increases boundary
localization accuracy only marginally. Second, we do not assume a Gaussian intensity profile distribution but estimate the
distribution non-parametrically with kNN probability density estimation. This can be important in the presence of distinct
background structures of varying brightness. It is however computationally more expensive and it can be less accurate if
the number of training profiles is small.

A full segmentation took on average 25 seconds on a 2GHz Pentium PC when the original ASM gray value model was used
and 450 seconds using the kNN model. The main reason for the increase in computation time is the time it takes to find
the nearest neighbors in a large set of training profiles. We believe that a segmentation time of 450 seconds is acceptable
for automatic segmentation, but if computation time is an issue the method could be sped up by using an approximate
kNN classification, by using less shifted examples and pruning the kNN tree, or by using other classifiers. For instance,
a quadratic discriminant classifier could be used, which is equivalent to extending the original ASM gray value modeling
scheme to more classes, such that the probability that a given profile is on the boundary is determined by the Mahalanobis
distances to the means of boundary and shifted profiles.

A different approach to applying a non-linear appearance model in ASM segmentation was proposed by van Ginneken
and co-workers.29 They extract local texture features at points on a grid around each landmark, label the points as inside
or outside the object, perform feature selection and train a kNN classifier on the labeled points. The optimal landmark
position in the model fitting step is then the position that maximizes the probability that the points inside the contour
indeed belong to the object and those outside are part of the background. This method was shown to perform very well on
segmentation problems where the object and background have different texture. In the case of AAA segmentation, where
many background structures are similar to the object in gray value and texture, the ordering of different gray values along
the profile can become important and our method may be more suitable. In addition, in the top and bottom part where the
aneurysm diameter is small, the extreme ”inside” part of the profile may in fact be outside the object on the other side,
which makes the method proposed in29 less reliable.

In this work we have discussed segmentation of the thrombus outer boundary, while for thrombus volume measurements
the passable lumen must be extracted as well. For the lumen segmentation one of several existing automatic or semi-
automatic methods can be used.7–16 Another option is to apply the proposed method to the lumen as well, thus building
a combined shape model of both the inner and the outer boundary. In that case, the more easily detected lumen-thrombus
boundary could help the model in locating the thrombus-background boundary. Obviously, this increases the problem of
overconstraining the model using a small training set and probably more than the 23 datasets used in this study will be
needed to obtain satisfactory segmentation results.
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The presented method achieves good results in most cases, but sometimes fits (partly) to a different boundary (see Figure 5).
In those cases, an interactive scheme in which a user drags one or a few landmark points to the correct boundary and the
model is constrained to go through those points could be helpful. Van Ginneken et al 36 show that fixing one or two points
can drastically improve segmentation accuracy in two-dimensional ASM segmentation of AAA. Such a scheme could also
be used for initialization,37 so that the user has to click only a few points on the boundary of the first and last slice, instead
of drawing an entire contour.

5. CONCLUSIONS

We have presented a three-dimensional model based segmentation of thrombus in CTA scans of abdominal aortic aneurysms.
The generalizability of a point distribution model is extended by modeling axis and cross-section deformation modes in-
dependently. In addition, we propose a new gray value model which significantly outperforms the gray value model that is
normally used in ASM (p <0.00001). Obtained volume errors are comparable to intra-observer errors reported in literature.
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