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classificationLauge Sørensena and Marleen de Bruijnea,baDepartment of Computer Siene, University of Copenhagen, Copenhagen, Denmark;bBiomedial Imaging Group Rotterdam, Departments of Radiology & Medial Informatis,Erasmus MC, Rotterdam, The NetherlandsABSTRACTA good problem representation is important for a pattern reognition system to be suessful. The traditionalapproah to statistial pattern reognition is feature representation. More spei�ally, objets are representedby a number of features in a feature vetor spae, and lassi�ers are built in this representation. This is also thegeneral trend in lung parenhyma lassi�ation in omputed tomography (CT) images, where the features oftenare measures on feature histograms. Instead, we propose to build normal density based lassi�ers in dissimilarityrepresentations for lung parenhyma lassi�ation. This allows for the lassi�ers to work on dissimilarities be-tween objets, whih might be a more natural way of representing lung parenhyma. In this ontext, dissimilarityis de�ned between CT regions of interest (ROI)s. ROIs are represented by their CT attenuation histogram andROI dissimilarity is de�ned as a histogram dissimilarity measure between the attenuation histograms. In thissetting, the full histograms are utilized aording to the hosen histogram dissimilarity measure.We apply this idea to lassi�ation of di�erent emphysema patterns as well as normal, healthy tissue. Twodissimilarity representation approahes as well as di�erent histogram dissimilarity measures are onsidered.The approahes are evaluated on a set of 168 CT ROIs using normal density based lassi�ers all showinggood performane. Compared to using histogram dissimilarity diretly as distane in a k nearest neighborlassi�er, whih ahieves a lassi�ation auray of 92.9%, the best dissimilarity representation based lassi�eris signi�antly better with a lassi�ation auray of 97.0% (p = 0.046).Keywords: lassi�er design, lung, COPD, emphysema, dissimilarity representation, earth movers distane1. INTRODUCTIONThe traditional approah to statistial pattern reognition is feature representation. More spei�ally, objetsare represented by a number of features in a feature vetor spae, and lassi�ers are built in this representation.1This is also the general trend in lung parenhyma lassi�ation.2�6 Duin et al. motivated the idea of basinglassi�ation diretly on distanes between objets, thereby ompletely avoiding features.7 Instead of fousingon �nding good features for desribing objets, the fous is moved to �nding good dissimilarity measures foromparing objets. Dissimilarity representations may be preferable to the traditional feature representationapproah, e.g., when there is not enough expert knowledge available to de�ne proper features or when data ishigh dimensional.8Working in a dissimilarity representation of objets, a k nearest neighbor (kNN) lassi�er,9 whih is applieddiretly on distanes between objets, is a natural and simple hoie. However, there exist tehniques that make itpossible to use other lassi�ers suh as normal density based lassi�ers on dissimilarity data.8 The general idea isto represent data by a distane matrix ontaining pair-wise dissimilarities between objets, also alled dissimilarityrepresentation. From this representation, a feature spae is derived in whih traditional pattern reognitiontehniques then an be applied. Embedding of a Eulidean dissimilarity representation into a Eulidean spaevia lassial saling is one way of doing this.10 A seond approah is to treat the dissimilarity representation as anew data set with the rows being observations and the olumns being dimensions in a dissimilarity spae. EahFurther author information:Lauge Sørensen: E-mail: lauges�diku.dk, Telephone: (+45) 35 32 07 39



dimension in this spae measures the dissimilarity to a partiular training prototype, and the set of prototypes isalled the representation set.8 A third approah that will not be onsidered further in this paper, is embeddingin a pseudo-Eulidean spae in the ase of a non-Eulidean dissimilarity representation.10, 11Compared to a density based lassi�er built in a dissimilarity spae, kNN has high omputational omplexityand large storage requirements. In kNN, distanes to all training set objets need to be omputed when lassifyingnovel patterns, and therefore the entire training set needs to be stored. In a dissimilarity spae, a few objetsan be seleted from the training set as prototypes in the representation set, keeping the dimensionality lowand only requiring storage of the representation set and the trained lassi�er. A kNN lassi�er makes thelassi�ation deision based only on a loal neighborhood, i.e., the k losest prototypes, whih makes it sensitiveto noise. Density based lassi�ers in a dissimilarity representation are more global, in the sense that parametersof Gaussian funtions are estimated o�-line using all available dissimilarity training data while still working in alow dimensional dissimilarity spae or embedding, whih has a natural smoothing e�et. Also, the lassi�ationis based on a weighted ombination of the dissimilarities between the novel pattern and the prototypes. Theseweights are estimated using the entire training set and thus �essential� prototypes are given more weight in thelassi�ation deision. A density based lassi�er is therefore expeted to ahieve better generalization whendealing with a small and noisy data set, espeially in ases of normal distributed lasses.Previously, we investigated the use of feature histograms for lung disease pattern lassi�ation in omputedtomography (CT) using a histogram dissimilarity measure diretly as distane in a kNN lassi�er, whih showedpromising results.12 In the literature, measures of histograms, suh as moments of �lter response histograms andmeasures on o-ourrene matries, are often used as features in a feature spae when lassifying lung diseasepatterns in CT.2�6 Using only the �rst few moments of a histogram might disard valuable information. Instead,using the full histogram for lassi�ation may improve lassi�ation auray.13 This paper investigates thepossible bene�t of building lassi�ers in a histogram dissimilarity representation ompared to using histogramdissimilarity diretly as distane in a kNN lassi�er. In light of the previous disussions, we see several possiblebene�ts of using a density based lassi�er trained in a histogram dissimilarity representation for lung parenhymalassi�ation. To our knowledge, this has not been investigated before.Pekalska et al. have applied dissimilarity representations in numerous standard data sets, inluding hand-written digits, polygons, road signs, and hromosome band pro�les.8, 14 Dissimilarity representations have alsobeen used in various other pattern reognition appliations. Trosset et al. used dissimilarity representationsfor disriminating patients with Alzheimer's disease from normal elderly subjets in magneti resonane images.The dissimilarities were based on hippoampal dissimilarity obtained from image registration deformations.15In this work, we represent images by histograms and onstrut dissimilarity representations based on histogramdissimilarities, whih is an approah also taken by other authors. Bruno et al. used a dissimilarity representationbased on symmetrized Kullbak-Leibler divergene between RGB histograms for image retrieval.16 Palik et al.investigated the use of dissimilarity representations in hyperspetral data lassi�ation using various histogramdissimilarity measures.17The spei� appliation of this paper is lassi�ation of emphysema subtype and normal tissue in regions ofinterest (ROI), based on the CT attenuation histogram. Emphysema is a major omponent of hroni obstrutivepulmonary disease (COPD) and is haraterized by gradual loss of lung tissue. COPD is a growing healthproblem worldwide. In the United States alone, it is the fourth leading ause of morbidity and mortality, and itis estimated to beome the �fth most burdening disease worldwide by 2020.18 Methods for reliable lassi�ationof emphysema in lungs are therefore of interest, sine they may form the basis for omputer-aided diagnosis.CT imaging is gaining more and more attention as a diagnosti tool for COPD, and it is a sensitive methodfor diagnosing emphysema, assessing its severity, and determining its subtype. Both visual and quantitative CTassessment are losely orrelated with the pathologial extent of emphysema.19 Emphysema is usually lassi�edinto three subtypes, or patterns, in CT,20 and the two of the three subtypes we fous on in this paper arethe following: entrilobular emphysema (CLE), de�ned as multiple small low-attenuation areas; and paraseptalemphysema (PSE), de�ned as multiple low-attenuation areas in a single layer along the pleura often surroundedby interlobular septa visible as thin white walls.



2. METHODSThis setion desribes the methodology that we use. Setion 2.1 brie�y desribes how the attenuation histogramsare omputed from the ROIs. Setion 2.2 desribes three di�erent histogram dissimilarity measures used foromparing histograms. Setion 2.3 desribes two dissimilarity representation approahes: the dissimilarity spaeapproah and an embedding approah based on lassial saling. Both are based on a distane matrix that in turnis based on a histogram dissimilarity measure. Finally, Setion 2.4 desribes two lassi�ers, a linear disriminantand a quadrati disriminant lassi�er, that both will be trained and tested in the dissimilarity representations.2.1 Histogram estimationWe represent eah ROI by its attenuation histogram. The histogram is estimated using non-linear binning byhoosing the histogram bins suh that the total distribution of the attenuation values in the training set isapproximately uniform.13 All histograms are normalized to sum to one.2.2 Histogram dissimilarity measuresThree histogram dissimilarity measures L are onsidered: one based on histogram intersetion (HI),21 earthmovers distane (EMD),22 and the L2-norm. HI is given by
HI(H, K) =

Nb
∑

i=1

min(Hi, Ki)where H ∈ R
Nb and K ∈ R

Nb are histograms eah with Nb bins. HI(·, ·) is a similarity measure, and adissimilarity measure based on this an be obtained by
LHI(H, K) = 1 − HI(H, K). (1)All histograms onsidered in this work sum to one, thus LHI(·, ·) ∈ [0, 1]. EMD is given by
LEMD(H, K) =

Nb
∑

i=1

Nb
∑

j=1

CijFij (2)where C ∈ R
Nb×Nb is a ground distane matrix and F ∈ R

Nb×Nb is a �ow matrix. The �ow matrix ontains theoptimal �ows obtained by solving the transportation problem of moving the mass of H suh that it mathes themass of K. The L2-norm is given by
L2(H, K) =

√

√

√

√

Nb
∑

i=1

(Hi − Ki)2. (3)2.3 Dissimilarity representationsComputing all pairwise dissimilarities L between the objets from the set A = {a1, . . . , an} and the set B =
{b1, . . . , bm} we obtain the n × m dissimilarity, or distane, matrix8, 14

DL(A,B) =







L(a1, b1) . . . L(a1, bm)... . . . ...
L(an, b1) . . . L(an, bm)






. (4)Using (4) with either (1), (2), or (3) as histogram dissimilarity, we obtain three di�erent distane matrix repre-sentations of the data DLHI

(A,B), DLEMD
(A,B), and DL2

(A,B).



2.3.1 Dissimilarity spaeOne way to utilize the distane matrix (4) is by extrating a representation set of prototypes R. Given a trainingset T , this approah selets a set of objets R ⊆ T from T . All objets in T are represented in a dissimilarityspae, where the i'th dimension orresponds to the dissimilarity with prototype Ri ∈ R, i.e., we ompute
DL(T ,R).8 Seleting a representation set is oneptually similar to seleting a limited number of prototypesfor the kNN lassi�er. However, where the prototypes de�ne the kNN lassi�er independently of the remainingtraining set, R de�nes a dissimilarity spae in whih the entire training set is represented and used to train alassi�er. The �nal lassi�er is therefore expeted to be less sensitive to the spei� hoie of prototypes.There are di�erent ways of hoosing the representation set, e.g., random seletion or feature seletion methods,in this ontext searhing for prototypes. For simpliity, we will only onsider random prototype seletion in thiswork. Random seletion has previously been found to give reasonable results.102.3.2 EmbeddingInstead of seleting prototypes, another approah is to embed DL(T , T ) in a vetor spae and redue thedimensionality of this spae. Standard inner produt based tehniques an be applied in this spae.A DL(T , T ) based on an Eulidean dissimilarity measure L an be perfetly embedded in an Eulidean spaeby lassial saling, whih is a distane preserving linear mapping.10 It is based on the positive de�nite Grammatrix

G = −
1

2
J(DL ⊙ DL)Jwhere ⊙ denotes entry-wise matrix multipliation and the entering matrix J = I− 1

n11
T where n is the numberof training set objets and 1 = [1, . . . , 1]T ∈ R

n. G is fatorized using an eigendeomposition
G = QΛQTwhere Λ is a diagonal matrix ontaining eigenvalues ordered by desending magnitude and Q is a matrix on-taining the orresponding eigenvetors. For k ≤ n non-zero eigenvalues, a k-dimensional Eulidean embeddingis then obtained by
E = QkΛ

1

2

k (5)where Qk ∈ R
n×k ontains the �rst k leading eigenvetors and Λk ∈ R

k×k ontains the square roots of theorresponding eigenvalues.When DL(T , T ) is based on a non-Eulidean dissimilarity measure, B is not positive de�nite and therefore hasnegative eigenvalues. In this ase, an Eulidean embedding annot be obtained using (5) sine the omputationsrely on square roots of the eigenvalues. This problem an be addressed by onsidering only positive eigenvaluesand orresponding eigenvetors in (5).10Two of the histogram dissimilarity measures used in this work, (1) and (2), are non-Eulidean and one, (3),is Eulidean. When using Eulidean distane, i.e., (3), lassial saling reovers the original n× Nb data matrixfrom the n × n distane matrix up to loation, re�etion, and rotation.2.4 Classi�ersTwo lassi�ers are evaluated in the di�erent dissimilarity representations: a linear disriminant lassi�er (LDC)and a quadrati disriminant lassi�er (QDC).1, 9 These lassi�ers have previously shown to perform well indissimilarity spaes.14 Both are density based lassi�ers using multivariate Gaussian funtions to representlasses ωi = {µi, Σi}

Gi(x; µi, Σi) =
1

(2π)N/2|Σi|1/2
exp

(

−
1

2
(x − µi)

T Σ−1

i (x − µi)

)



where N is the dimensionality of the input spae and x ∈ R
N is a position in the input spae. In LDC, equallass ovariane matries Σ are assumed resulting in the following linear disriminant funtion

gi(x) = x
T Σ−1µi −

1

2
µT

i Σ−1µi + log P (ωi) (6)where Σ and the lass sample means µi are estimated in the dissimilarity representation obtained from DL(T , T )and P (ωi) is the lass prior. In QDC, eah lass ovariane matrix Σi is estimated separately resulting in thefollowing quadrati disriminant funtion
gi(x) = −

1

2
log |Σi| −

1

2
(x − µi)

T Σ−1

i (x − µi) + log P (ωi). (7)The density based lassi�ers assigns lass ωi to observation x aording to the maximum disriminant funtion
ĝ(x) = arg max

i
gi(x). (8)3. EXPERIMENTS AND RESULTSThe data used for the experiments originates from a set of thin-slie CT images of the thorax. CT was performedusing GE equipment (LightSpeed QX/i; GE Medial Systems, Milwaukee, WI, USA) with four detetor rows,using the following parameters: In-plane resolution 0.78 × 0.78 mm, 1.25 mm slie thikness, tube voltage 140kV, and tube urrent 200 milliampere (mA). The slies were reonstruted using a high spatial resolution (bone)algorithm. A population of 25 patients, 8 healthy non-smokers, 4 smokers without COPD, and 13 smokersdiagnosed with moderate or severe COPD aording to lung funtion tests18 were sanned in the upper, middle,and lower lung, resulting in a total of 75 CT slies.Visual assessment of the leading pattern, either NT, CLE, or PSE, in eah of the 75 slies was done individuallyby an experiened hest radiologist and a CT experiened pulmonologist. 168 non-overlapping ROIs of size 31×31pixels were annotated in the slies, representing the three lasses: NT (59 observations), CLE (50 observations),and PSE (59 observations). The NT ROIs were annotated in the non-smokers and the CLE and PSE ROIs wereannotated in the smokers, within the area(s) of the leading pattern.Figure 1 shows an ROI from eah of the three lasses, together with the CT slies in whih they were annotated,and Figure 2 shows the attenuation histograms of all 168 ROIs estimated using the non-linear binning prinipledesribed in Setion 2.1.3.1 Visualizing dissimilarity spaesThree prototypes are seleted at random, one from eah lass, and the resulting pair-wise dissimilarity spaesare inspeted by plotting the dissimilarities between all observations and one prototype versus the dissimilaritiesbetween all observations and seond prototype. The results an be seen in Figure 3. The lass separation isalready quite good using only two prototypes and it an be expeted to be even better when using more thantwo prototypes. In some ases, there is a tendeny to degenerate behavior of the resulting spaes, e.g., in Figure3(i) where the PSE samples almost reside on a line in the two-dimensional dissimilarity spae.3.2 Visualizing embeddingsFigure 4 shows the eigenvalues derived in the embedding proess for DLHI

, DLEMD
, and DL2

on our data. Asseen in Figure 4(a) and 4(b), the non-Eulidean property of LHI and LEMD is revealed by the presene ofnegative eigenvalues. The number of eigenvalues that are signi�antly di�erent from zero is small in all threeases, showing that the intrinsi dimensionality of the three dissimilarity representations of the data is ratherlow.Figure 5 shows two-dimensional embeddings obtained by using the two eigenvetors with the largest positiveeigenvalues. The lass separation is generally good in all three representations.



(a) CT slie with leading NTpattern. (b) CT slie with leading CLEpattern. () CT slie with leading PSEpattern.
(d) NT ROI. (e) CLE ROI. (f) PSE ROI.Figure 1. Examples slies and ROIs annotated in the same slies. The ROI in 1(d) is from 1(a) et.
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.Figure 3. Examples of dissimilarity spaes obtained using representation sets with two random prototypes.
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.Figure 5. Two-dimensional embedding of DL using the two eigenvetors with the largest positive eigenvalue.3.3 Classi�er stabilityWe use feature urves for inspeting the stability of the dissimilarity representation based lassi�ers as a fun-tion of the number of dimensions in the representation. That is, as a funtion of the number of prototypesin R and number of retained eigenvetors in E. The feature urves are omputed based on thirty repeatedrandom 50%/50% data splits. In these splits, balaned lass distributions are ensured by plaing half the ROIsrepresenting one lass in the training set and the other half in the test set. In eah split, the dimension range

N = [1, 2, . . . , 30] is used in turn by seleting N random prototypes in the dissimilarity spae approah and Npositive eigenvetors in the embedding approah, in both ases from the training set.Figure 6 shows the resulting prototype urves. QDC is more sensitive to the number of dimensions omparedto LDC. This phenomenon an be explained by the inreasing number of parameters in QDC, whih requiresmore training samples for reliable estimation.3.4 Classi�er aurayThe lassi�ation auray is evaluated using leave-one-out error estimation on the 168 ROIs, and the followinglassi�er setups are evaluated:
• kNN using histogram dissimilarity measure L as distane. k = [1, 2, . . . , 5], L = {LHI , LEMD, L2}.
• Classi�er C in a dissimilarity spae de�ned by random representation set seletion from distane matrix

DL. C = {LDC, QDC}, DL = {DLHI
, DLEMD

, DL2
}.

• Classi�er C in an embedding of a distane matrix DL. C = {LDC, QDC}, DL = {DLHI
, DLEMD

, DL2
}.



1 5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

45

50

Number of prototypes

A
ve

ra
ge

d 
er

ro
r

(a) Dissimilarity spae using DLHI
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(e) Dissimilarity spae using DL2
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.Figure 6. Feature urves of dissimilarity representation based LDC and QDC. Standard deviations are shown as dashedlines. The asterisks mark the minimum of eah urve. The performane of the best kNN lassi�er, for k = [1, . . . , 5],using the training set as prototypes and the histogram dissimilarity in question as distane is also shown for referene asa horizontal line.



Classi�er LHI LEMD L2kNN using L as distane 1NN 91.7 92.9 92.3
2NN 91.1 91.1 91.7
3NN 92.9 91.1 92.3
4NN 92.3 90.5 91.7
5NN 91.1 89.3 91.1Dissimilarity spae LDC 88.6 (±1.0) 88.3 (±1.7) 87.6 (±1.3)
QDC 93.1 (±1.1) 90.1 (±2.0) 93.3 (±1.2)Embedding LDC 91.1 97.0 86.3
QDC 94.1 95.2 95.2Table 1. Results of the leave-one-out evaluation. The reported performane of the dissimilarity spae experiments is anaverage of ten repeated leave-one-out experiments where the representation set is drawn at random eah time. The samerandom representation set is used for all tested on�gurations. The standard deviations of these experiments are shownin parenthesis.The number of bins in the non-linear attenuation histogram is hosen as Nb = ⌊ 3

√

Np⌋, where Np is the numberof pixels in the ROI. In alulating LEMD, the ground distane matrix, C in (2), is onstruted suh that thedistane between two neighboring bins the attenuation histograms is one. More generally, the ground distanebetween bin i and bin j is Cij = |i − j|. Further, we use the EMD implementation by Rubner.23 The LDC andQDC lass priors, P (ωi) in (6) and (7), are estimated from data. The dimensionality of the dissimilarity spaesin all lassi�er setups is, somewhat arbitrarily, �xed to seven. All dissimilarity representation based lassi�ersperform reasonably well at this dimensionality aording to the feature urves in Figure 6. The experiments arearried out in Matlab using the PRTools toolbox.24In general, all the lassi�ers perform well, see Table 1, with lassi�ation auraies in the range 88.3%−97.0%.Using the dissimilarity spae approah with randomly hosen prototypes generally performs worse than usingkNN with histogram dissimilarity as distane diretly. However, the embedding approah shows very promisingresults, espeially when LEMD is used as histogram dissimilarity. The best estimated lassi�ation auray of97.0% is ahieved using LDC in the approximate embedding of DLEMD
, and this is signi�antly better than thebest kNN with histogram dissimilarity as distane aording to a MNemar's test25 (p = 0.046).4. DISCUSSION AND CONCLUSIONSThe best dissimilarity representation based lassi�er ahieves a lassi�ation auray of 97.0%, and this is signif-iantly better (p = 0.046) than the best kNN lassi�er with histogram dissimilarity as distane, whih ahievedan auray of 92.9%. Generally, the embedding based lassi�ers perform slightly better than both the kNNand the dissimilarity spae lassi�ers. Further, dissimilarity spae based QDC, using only seven prototypes,performed similar to kNN. These results suggest that building lassi�ers in a dissimilarity representation, espe-ially by embedding, is bene�ial in the demonstrated appliation. The improved auray an be due to severalfators. Firstly, a density based lassi�er built in a dissimilarity representation is more global, making use of allavailable training data in the lassi�ation deision, as opposed to a kNN lassi�er, whih lassi�es only based onthe k nearest prototypes. Seond, in the embedding, the lasses seem to be approximately normal distributed,see Figure 5, whih �ts well with normal density based lassi�ers like LCD and QDC.Auraies previously reported in the literature on lung parenhyma lassi�ation in CT inluding at leastone type of emphysema, and using measures of feature histograms as features in a feature spae, are generallylower and lie in the range 76% − 93, 5%.2�6 These results are not diretly omparable due to di�erenes in thedata, the hoie of lasses, et. Nevertheless, the high auraies of our experiments indiate that using the fullfeature histogram is bene�ial and that a dissimilarity representation on histogram dissimilarities is a good wayof utilizing the full feature histogram information.



In this work, we evaluated the dissimilarity spae approah by drawing random prototypes for simpliity.However, prototype seletion ould be used instead, as in,14 whih ould improve the performane of the repre-sentation set approah. Another possibility would be to draw the prototypes at random on lass-level suh thatan equal amount of prototypes from eah lass are present in the representation set.QDC, and to some degree also LDC, showed unstable behavior in high dimensional dissimilarity spaes andembeddings, as seen in the feature urves in Figure 6. This problem ould be addressed by regularizing theestimated ovariane matries, allowing a larger number of dimensions to be used.9 This ould possibly improvethe lassi�ation auray.A natural next step would be to try dissimilarity representations based on other feature histograms than theattenuation histogram. For example, feature histograms desribing loal struture like loal binary patterns12or other types of features previously used in lung parenhyma lassi�ation.2�6 Combining the attenuationhistogram and feature histograms desribing loal struture in a dissimilarity representation might improveperformane.In onlusion, we explore the use of normal density based lassi�ers built in a dissimilarity representation forlung parenhyma lassi�ation. Two di�erent dissimilarity representation approahes are onsidered; embeddingby lassial saling and the dissimilarity spae approah, and dissimilarity representations based on di�erenthistogram dissimilarity measures are tried out. Two lassi�ers, LDC and QDC, are evaluated in the dissimilarityrepresentations, and the best dissimilarity representation based lassi�er performed signi�antly better thanusing histogram dissimilarity diretly as distane in a kNN lassi�er. A histogram dissimilarity representationallows for utilizing full feature histograms in lassi�ation, and through this representation, normal densitybased lassi�ers an be trained on histogram dissimilarity data. Further, sophistiated histogram dissimilaritymeasures, like the earth movers distane, �t naturally into this framework.ACKNOWLEDGMENTSThis work is partly funded by the Danish Counil for Strategi Researh, under the Programme Commission forNanosiene and Tehnology, Biotehnology and IT (NABIIT), by the Netherlands Organisation for Sienti�Researh (NWO), and by AstraZenea, Lund, Sweden.We would like to thank Saher B. Shaker (Hvidovre University Hospital, Denmark) and Asger Dirksen (Gen-tofte University Hospital, Denmark) for providing the data used in this work.REFERENCES[1℄ Duda, R. O., Hart, P. E., and Stork, D. G., [Pattern Classi�ation (2nd Edition) ℄, Wiley-Intersiene(November 2000).[2℄ Uppaluri, R., Ho�man, E. A., Sonka, M., Hartley, P. G., Hunninghake, G. W., and MLennan, G., �Com-puter reognition of regional lung disease patterns.,� Am J Respir Crit Care Med 160, 648�654 (Aug 1999).[3℄ Chabat, F., Yang, G.-Z., and Hansell, D. M., �Obstrutive lung diseases: texture lassi�ation for di�eren-tiation at CT,� Radiology 228, 871�877 (Sep 2003).[4℄ Sluimer, I. C., van Waes, P. F., Viergever, M. A., and van Ginneken, B., �Computer-aided diagnosis in highresolution CT of the lungs,� Med Phys 30, 3081�3090 (De 2003).[5℄ Xu, Y., Sonka, M., MLennan, G., Guo, J., and Ho�man, E. A., �MDCT-based 3-D texture lassi�ationof emphysema and early smoking related lung pathologies.,� IEEE Trans Med Imaging 25, 464�475 (Apr2006).[6℄ Park, Y. S., Seo, J. B., Kim, N., Chae, E. J., Oh, Y. M., Lee, S. D., Lee, Y., and Kang, S.-H., �Texture-based quanti�ation of pulmonary emphysema on high-resolution omputed tomography: Comparison withdensity-based quanti�ation and orrelation with pulmonary funtion test,� Investigative Radiology 43, 395�402 (June 2008).[7℄ Duin, R., de Ridder, D., and Tax, D., �Featureless pattern lassi�ation,� Kybernetika 34(4), 399�404 (1998).[8℄ Pekalska, E. and Duin, R. P. W., �Dissimilarity representations allow for building good lassi�ers,� PatternReognition Letters 23(8), 943�956 (2002).
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