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Abstract. This paper introduces a novel optimal graph construction
method that is applicable to multi-dimensional, multi-surface segmen-
tation problems. Such problems are often solved by refining an initial
coarse surface within the space given by graph columns. Conventional
columns are not well suited for surfaces with high curvature or complex
shapes but the proposed columns, based on properly generated flow lines,
which are non-intersecting, guarantee solutions that do not self-intersect
and are better able to handle such surfaces.
The method is applied to segment human airway walls in computed
tomography images. Comparison with manual annotations on 649 cross-
sectional images from 15 different subjects shows significantly smaller
contour distances and larger area of overlap than are obtained with re-
cently published graph based methods.
Airway abnormality measurements obtained with the method on 480
scan pairs from a lung cancer screening trial are reproducible and corre-
late significantly with lung function.
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1 Introduction

Graph based methods similar to Wu and Chen’s [10] polynomial time solutions
to optimal net surface problems using minimum cut algorithms have seen a
growing use within medical image segmentation in the last couple of years. The
methods can find the globally optimal solution for multiple surfaces in multiple
dimensions given surface cost functions, and various geometric constraints [4, 5,
9, 11].

In order to use these methods, the segmentation problem needs to be trans-
formed from image space to some discretized graph space defined by a set of
columns. Each column is associated with a point on the sought surface and rep-
resents the set of possible solutions, or positions, it can take. The suitability of
the graph space depends on how well plausible solutions in image space can be



represented. For instance if a graph column does not cross the sought surface,
then this surface can not be represented in graph space. Similarly, admissible
solutions in graph space should represent valid surfaces in image space. If this
is not the case the found solutions can for instance have self-intersections. It is
also important that the transformation allows for a meaningful representation of
the surface cost functions and geometric constraints, such as for instance surface
smoothness.

There have been methods using simple mathematical transformations, such
as [4, 9], in which images of tubular airway segments were unfolded using polar
transforms in two or three-dimensions. The graph columns were oriented perpen-
dicular to the resulting straight contours or terrain like surfaces allowing for an
easy representation of surface smoothness constraints. However such approaches
only work with very simple shapes.

In [5] a rough initial segmentation was used to define the transform. The
columns were placed at surface points and oriented along the surface normals.
By limiting their length to the minimum distance to the medial axes of the
initial segmentation, problems with intersecting columns and thus possible self-
intersecting surfaces were avoided. The approach can however result in columns
that are too short to reach the desired solution, as shown in Fig. 1(a). In such
areas the curvature of the surfaces through the columns also often does not follow
the curvature of the sought surfaces, which can make it harder to construct good
segmentation cost functions.

(a) Medial Axes (b) Flow Lines

Fig. 1. Figure 1(a) illustrates the fishbone like structure of surface normal direction
columns (green) based on the distance to the medial axis (red) in areas of the initial
segmentation (black) with high curvature. Notice that the four inner-most columns do
not cross the sought surface border (blue), which means that the segmented surface
will be wrong in these positions. Figure 1(b) shows the advantage of columns based on
flow lines (green). Notice that all columns cross the sought surface, and the curvature
of the surfaces through the columns are more similar to the curvature of the sought
surface.

Yin et al. [11] suggested columns inspired by the non-intersecting property of
electric lines of force. The columns were constructed by placing electrical charges
at surface points of the initial segmentation and tracing the electric lines of force



within the field inward and outward. The method is computationally intractable
for large scale problems, as every surface point charge influences the computation
of every electric line of force. Furthermore the electric lines of force can behave
erratically if the initial segmentation contains small scale errors or noise.

We suggest to combine a regularization of the initial segmentation with a
curvilinear transformation using an implementation which is computationally
tractable for large scale problems. The columns are defined by greatest ascent
and descent flow lines, calculated from the convolution of the initial segmenta-
tion with a C1 continuous integrable filter. Such flow lines are uniquely defined
and also non-intersecting, and fast approximations can often be computed by
limiting the extent of the convolution kernels. Furthermore, regularization terms
are naturally incorporated into the framework, making it easier to deal with
noise and small errors in the initial segmentation. Figure 1(b) illustrates the
concept.

We apply the method to the problem of segmenting the human airway walls
in three dimensions in computed tomography images, to allow quantification
of abnormalities such as airway thickening and bronchiectasis. This is a dual
surface problem, consisting of an inner and an outer surface boundary, between
the airway lumen and the wall and between the lung parenchyma and the wall
respectively, where the many bifurcations form regions of high curvature that
would cause problems for conventional graph construction approaches.

2 Method

2.1 Initial Segmentation

We will assume the existence of a coarse initial segmentation, a single object
given by the voxels in the set S, whose surface should be roughly similar to the
surfaces we are looking for. For our application we used the airway tree seg-
mentation algorithm described in [7], which returns a binary three-dimensional
segmentation of the airway lumen.

The initial segmentation needs to be converted to a mesh. To this end, we
used vertices at the center of each surface face and the neighborhood given by
the face edge neighbors, such that each vertex has 4 neighbors. We will denote
the vertices in this mesh with VB , and represent the neighborhood with an edge
set EB , where (i, j) ∈ EB denotes that the vertices i, j ∈ VB are neighbors. The
resolution of the mesh used in the experiments was 0.5 mm ×0.5 mm ×0.5 mm.

2.2 Flow Lines

A flow line in a vector field is tangent to the field at each point, and if it is
defined in terms of some scalar potential, it will follow the direction with the
greatest rate of change of this potential. Consider the potentials E defined by
the convolution:

E(x) =

∫
Q(x̂)R(x̂− x)dx̂ , (1)



where x is the position to be evaluated and Q is an indicator function for the
initial segmentation:

Q(x) =

{
1 if x ∈ S
0 if x /∈ S .

In this work we experimented with generating the potentials from two different
types of filters. The first are of the form:

R(x) =
1

α+ |x|2
, (2)

where α > 0 is a regularization constant, which makes R well defined for all x.
Increasing the value of α has the added effect of smoothing the result, which
is useful if the initial segmentation contains a lot of noise. Notice that when
α → 0, E becomes equal to the electric potential times a constant arising from
a ’charge density’ given by Q. This option therefore is similar to the method
introduced in [11], but rather than having a discrete set of surface point ’charges’,
which introduce local singularities, it is defined everywhere and thus allows us
to trace the flow lines consistently through the surface. We will refer to this as
the potential kernel/filter.

The second type of flow line is given by the Gaussian kernel, that is:

R(x) = ce−|x|
2/(2σ2) , (3)

which is separable, unlike the potential filter. The convolution operation thus
becomes much less expensive.

The flow lines are traced inward in the gradient direction and outward in the
negative gradient direction, sampling the columns at regular arc length intervals.
This was done using a sampling interval of 0.5 mm. At some point the gradient
flattens to the point where we can no longer trace the column due to numerical
issues or due to the size of the convolution kernel, resulting in a column with a
finite number of inner and outer column points.

2.3 Graph

We use an optimal graph construction technique similar to Ishikawa’s [3], which
has slightly fewer edges than the Wu and Chen method [10]. It should be noted
that neither of these papers deal with columns of varying lengths, however this
can easily be dealt with similar to how the out of bounds edges were handled by
Ishikawa [3], see (7) and Fig. 2(b).

We have a column Vi traced from each mesh vertex i ∈ VB , with the following
set of points: {i−Ii , i−(Ii−1), ..., i0, ..., iOi}, where Ii and Oi correspond to the
number of inner and outer column points relative to i0 = i, and need to construct
a maximum flow graph G = (V,E), with vertices V and edges E, to find the set
of surfaces M . We thus construct columns of vertices V mi = {imk | ik ∈ Vi} in V ,
where m ∈M such that:

V =
⋃

i∈VB ,m∈M
V mi ∪ {s, t} . (4)



Here s and t denote the source and sink nodes respectively. In the case of airway
wall segmentation, M = {0, 1} would denote the fact that there is an inner and
outer surface sub-graph.

Let (v
c→ u) denote a directed edge from vertex v to vertex u with capacity c.

We define a cost function w(imk ) ≥ 0, mapping a node with index k ∈ {−Ii, 1−
Ii, ..., 0, ..., Oi} in a column Vi to to the inverse likelihood that it is part of the
surface m, see Sect. 2.4. Such a data term can be implemented by the following
edges:

Edata =
{{

(imk
w(imk )→ imk+1) | imk , imk+1 ∈ V mi

}
∪{

(imOi

w(imOi
)

→ t), (s
∞→ imIi )

}
| i ∈ VB ,m ∈M

}
.

(5)

Since each column is a direct line of flow from the source to the sink, it must be
cut at least once. However in some degenerate cases, multiple cuts might exist
in each column. This is something to be avoided, as it could change the topology
of the surface. A solution is to add infinite cost edges opposite to the data term
edges:

E∞ =
{

(imk
∞→ imk−1) | i ∈ VB ,m ∈M, imk−1, i

m
k ∈ V mi

}
. (6)

An example of these edges is given in Fig. 2(a).
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Fig. 2. Two example neighboring columns Vi and Vj , with Ii = 4 and Ij = 2 inner
column points and Oi = 3 and Oj = 5 outer column points (note m superscript left
out for clarity). The data term edges are given by the black arrows and the infinite
cost edges are dotted in Fig. 2(a). The inter column edges generated from a linear edge
penalty function in Fig. 2(b) in black. If the edge penalty is of the form: fi,j(x) = pmx,
the (bi-)directional capacity of these inter column edges are then given by pm. Notice
that when combining the inter and intra column edges the vertex j5 has two edges
connecting it to the sink node. This is just for illustrative purposes, in practice the
capacities of these are summed and implemented with a single edge. The inter column
edge from the s to i−4 can be left out completely.



Let fi,j,m,n(|k − l|) define a convex non-decreasing function describing the
inverse likelihood that both vertex ik ∈ Vi and jl ∈ Vj are part of the surfaces
m,n ∈M respectively. Note m can be equal to n and i can be equal to j, but not
simultaneously. This can be thought of as an edge penalty, since it attributes
a penalty of including the ’edge’ (imk , j

n
l ) in the solution and can be used to

implement surface smoothness and separation penalties, see (9). Both Ishikawa
[3] and Wu and Chen [10] show how such edge penalties can be implemented
in the case where the columns have equal length. The following inter column
edges extend the implementation to the case where both the number of inner
and outer column points can vary:

Einter =
{{

(imk
4i,j,m,n(k−l)→ jnl ) | imk ∈ V mi , jnl ∈ V nj

}
∪{

(s
4i,j,m,n(k−l)→ jnl ) | jnl ∈ V nj , k ∈ L(j, i)

}
∪{

(imk
4i,j,m,n(k−l)→ t) | imk ∈ V mi , l ∈ U(i, j)

}
| i, j ∈ VB ,m, n ∈M

}
,

(7)

where L and U describe the needed edge endpoints that are out of bounds:

L(i, j) =
{
k | Ii > Ij , k ∈ {−Ii, 1− Ii, ...,−Ij − 1}

}
U(i, j) =

{
k | Oi > Oj , k ∈ {Oi, Oi − 1, ..., Oj + 1}

}
,

and 4 the capacity of the edges calculated from the edge penalty function:

4i,j,m,n(x) =


0 if x < 0
fi,j,m,n(1)− fi,j,m,n(0) if x = 0
(fi,j,m,n(x+ 1)− fi,j,m,n(x))−
(fi,j,m,n(x)− fi,j,m,n(x− 1))

if x > 0
. (8)

We used the following edge penalty functions in our experiments:

fi,j,m,n(x) =

pmx if m = n and (i, j) ∈ EB
qx if m 6= n and i = j
0 else

. (9)

pm is the smoothness penalty, defining the cost of each index the solution varies
between neighboring columns in the same surface m. q is the separation penalty,
defining the cost inherent in the solution for each index the surfaces are separated
in each column. The advantage of using linear edge penalty functions is that far
fewer edges are needed to implement the penalty as4i,j,m,n(x) = 0 for all x 6= 0.
An illustration of these edges is given in Fig. 2(b). The total edge set E in the
maximum flow graph is given by:

E = Edata ∪ E∞ ∪ Einter . (10)

Note the edge penalties described in this Sect. are soft. It is possible to add
hard constraints as well, by adding infinite cost edges between the columns. We
refer to [4, 10] for examples of this.

We used the algorithm described in [1] to find the minimum cut.



2.4 Cost Functions

In the case of airway walls, the columns will usually start inside the air-filled
lumen area, which has low density, move through the airway wall where the
density rises, and finally end up in the lung parenchyma where the density falls
again. The CT intensity directly reflects this density change. A common way to
find such boundaries is to use weightings of the first and second order derivatives
of the intensity along the columns [4, 5, 9]. In this way the positions of the found
surfaces can be adjusted relative to the ’real’ surfaces. For the experiments de-
scribed in this paper we used the cost functions of Petersen et al. [9], with inner
and outer surface derivative weights given by γ0, γ1 ∈ [0, 1]. The derivatives are
obtained using central differences from cubic interpolated values.

3 Experiments and Results

3.1 Data

The material used comes from the Danish lung cancer screening trial [8]. The
images were obtained using a Multi Detector CT scanner with a low dose (120
kV and 40 mAs), reconstructed using a hard kernel with a resolution of approx-
imately 0.78 mm × 0.78 mm × 1 mm.

For evaluation, we used manual annotations in 649 two-dimensional cross-
sectional images with a resolution of 0.5 mm × 0.5 mm extracted at random
positions perpendicular to and centered on the airways in 15 scans. Some of
these images contain more than one airway branch. Such other branches were
marked and excluded from the analysis. The images were split randomly in a
training and a test data set, consisting of 329 and 319 images from 8 and 7
subjects.

To evaluate suitability of the segmentations for deriving measures of airway
morphology as a sign of Chronic Obstructive Pulmonary Disease (COPD), 480
subjects for whom repeated scans and spirometry within a two year period were
available, were randomly selected to evaluate reproducibility of measures of air-
way morphology as well as their correlation with lung function.

3.2 Comparison to Existing Approaches

Experiments were conducted with a recently published two-dimensional method
[9] and three three-dimensional methods based on different ways of constructing
the columns. One was a method using straight columns Sk,τ , as described in
[5], the medial axes and normals were determined using the method of reference
[2] using k neighbors and an error tolerance of τ respectively. We refer to the
original article for a definition of these parameters. Normals with too large errors
were replaced by a nearest neighbor normal. The other two methods used the
proposed flow line columns calculated from the potential and Gaussian kernels,
denoted Pα and Gσ respectively.



Let Ml, Ma and X denote the manually marked lumen, airway and excluded
parts respectively. Similarly let Al and Aa denote the parts segmented by the
algorithms. We then evaluate the correctness of a segmentation in the cross-
sections using the relative area of overlap outside the excluded area, Φ as follows:

Φ(Ml,Ma, Al, Aa, X) =
|(Ml ∩Al)/X|
|Ml/X|+ |Al/X|

+
|(Ma ∩Aa)/X|
|Ma/X|+ |Aa/X|

. (11)

Define the contour C(A) of an area A as the set of pixels belonging to A, where
at least one of the pixels in the standard 4-neighborhood is not part of A. The
average contour distance was then defined by:

Ψ(Ml,Ma, Al, Aa, X) = meanx∈C(Al/X)d(C(Ml/X), x) , (12)

where d(A, x) defines the minimum euclidean distance between the point x and
the set A.

Parameter Tuning. The methods have inner and outer smoothness penalties,
inner and outer cost function derivative weightings and separation penalties,
denoted pm, γm and q where m ∈ M respectively. Optimal values for these pa-
rameters for each of the methods were obtained by searching the parameter space
on the training data set using an iterative algorithm. In each iteration a parame-
ter is searched by probing left and right search interval limits. If no improvement
in the mean value of Φ is detected the intervals are halved around the current
best guess and the process is repeated. This continues until a better guess is
found or the difference between the left and right search intervals becomes less
than some threshold. The search then proceeds with the next parameter in a
loop with reset left and right search interval limits until no more parameters
get updated. In order to avoid getting stuck in a local minima, the algorithm
was repeated a number of times using random values as initial guesses for the
parameters.

Since parameter optimization is time consuming, a small set of pilot experi-
ments were performed on the training set to determine suitable values of k, τ, α
and σ. The optimal value of τ was found to be about 2.5, meaning roughly 3%
of the normals were discarded for having an error above the tolerance. The seg-
mentation results improved with increasing k, flattening out at about 64. k is
inversely related to the resolution of the medial axis and thus directly related
to the length of the columns and number of self-intersections. The fact that the
relative high value of 64 works best seems to indicate that the straight column
method suffers from too short columns. The experiments with α indicated that
the potential kernel did not require additional regularization, so we chose a value
of α = 10−4 mm as this would have practically no regularizing effect, yet still
allowed the filter to be well defined everywhere. A similar conclusion holds for
σ, however as the Gaussian tends to zero much faster than the potential kernel,
the choice of σ seems to be a trade-off between too short columns or too much
regularization. A value of 0.45 mm provided the best results for our case.



Results. Running the proposed method on an image from our data usually takes
less than 10 minutes (Intel Xeon 1.60 GHz using no parallelization). Figure 3
shows a segmentation result in three dimensions and cross-sections illustrating
results of Gσ=0.45 and Sk=64,τ=2.5.

(a) (b) (c)

Fig. 3. Figure 3(a), 3(b) and 3(c) show the inner (green) and outer (blue) airway wall
surface of a segmentation result in three dimensions obtained using Gσ=0.45 and two
cross-sections near a bifurcation obtained with Sk=64,τ=2.5 and Gσ=0.45 respectively.
Notice how the outer surface cannot be correctly found using Sk=64,τ=2.5 in the region
with high curvature between the airway branches and there is even a hole in the
segmentation, probably due to self-intersecting surfaces.

Table 1 shows the results of the comparisons with the manual annotations
in the test data set, for each of the investigated methods using the optimal
parameters. Gσ=0.45 achieved the best result when measured with both metrics,
whereas Sk=64,τ=2.5 and 2D were the worst in terms of the relative area of overlap
and average contour distance respectively. Gσ=0.45 was significantly better than
any of the other three-dimensional methods and also significantly better than 2D
using Ψ (p < 0.05) and shows the smallest variance in the quality of the results
of all the methods (p < 0.0001). Results were compared using a paired-sample
t-test and a two-sample F -test respectively.

Table 1. The results of different methods and kernels on the test data set. Mean ±
standard deviation of (11) and (12). The best result marked with a bold font.

2D Sk=64,τ=2.5 Pα=10−4 Gσ=0.45

Φ 0.884 ± 0.079 0.865 ± 0.086 0.880 ± 0.079 0.890± 0.059
Ψ (mm) 0.115 ± 0.176 0.105 ± 0.132 0.113 ± 0.177 0.092± 0.102



3.3 Tree Extraction and Measurements

Airway centerlines and branch generations were extracted from the airway tree
with a front propagation method, as described in [6]. Airway morphology was
quantified using the Inner Volume (IV ) and the Wall Volume Percentage
(WV%), which are three-dimensional extensions to commonly used measures
of airway abnormality [9]. The segmentations were grouped in generations by
assigning each voxel to the generation of the nearest centerline point. Let W de-
note the area classified as belonging to a specific generation, then the measures
were computed in individual generations as follows:

IV = |W ∩Al| , (13)

WV% = 100×WV/(IV +WV )% , (14)

where WV = |W ∩ Aa/Al|. Branches of generation 1 to 8 were included in the
measurements. The trachea, defined as generation 0, was excluded.
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Fig. 4. Figure 4(a) shows the reproducibility of the measures, IV (blue) and WV%
(green), in repeated scans quantified as R2 in branch generations 1 to 8. Figure 4(b)
shows statistically significant correlation with lung function in the same generations of
the same measures.

The change in the measures during the roughly one year period between the
repeated scans is assumed to be mostly due to measurement variability. This is a
fair assumption given the relatively slow development of COPD and was backed
up by paired-sample t-tests, showing no significant difference in the means of the
measures in the same generation in repeated scans using a Bonferroni adjusted
significance level of p = 0.05. It is thus possible to quantify the reproducibility
of the measures, with the coefficient of determination, calculated from Pearson
product moment correlation coefficients of the measures in repeated scans, see
Fig. 4(a).

IV is the most reproducible measurement, which is to be expected given
the high contrast ratio between the air-filled lumen and high density wall. The



reproducibility of WV%, which depend on the segmentation of the outer sur-
face, show however that it is also determined with enough precision to allow
reproducible measurements, up to roughly generation 6.

Figure 4(b) shows Spearman’s correlation coefficients ρ of the measures and
lung function measured by Forced Expiratory Volume in one second as a per-
centage of the predicted value (FEV1 (% predicted)). IV is positively correlated,
indicating luminal narrowing with COPD, whereas WV% is negatively corre-
lated, indicating wall thickening, which is in agreement with current knowledge
of the disease process in COPD. These results indicate the method can be used
to measure abnormalities caused by COPD up to at least generation 8.

4 Discussion and Conclusion

In this paper we performed extensive parameter tuning for all methods to allow
for an as objective comparison as possible. However, it is our experience that
results are not very sensitive to the settings of these parameters and suitable
settings can be obtained by something as simple as a few trial and error runs
using manual inspection of the segmentation results.

The results indicate the importance of choosing a good convolution kernel.
For our specific application the Gaussian performed better than the potential,
which we think is mainly due to it tending to zero much faster, limiting long
range effects. More experiments will be needed to investigate which kernels are
suitable to which applications.

The proposed segmentation method is not able to extend the initial segmen-
tation beyond the lengths of the graph columns, and is thus not able to make
up for larger errors, such as missing branches. This can explain a large part of
the decline in reproducibility with generations, seen in Fig. 4(a). For instance
investigations on the amount of segmented branches compared to the theoret-
ical maximum, assuming a binary tree structure, revealed that almost all the
branches were segmented in generations 5, whereas the number had dropped to
about 50% in generation 6. Measurements conducted in corresponding branches,
as opposed to generations, might thus still be reproducible after generation 6 and
8.

To conclude, a new graph construction technique applicable to multi-dimen-
sional multi-surface segmentation problems was proposed. The method runs in
polynomial time and is able to penalize for non-smoothness and separation of the
found surfaces. The results are guaranteed to not self-intersect and are robust
in regions with large curvature.

We applied the method to the problem of segmenting human airway walls in
CT images and results were shown to be significantly more accurate than those of
recently published two- and three-dimensional methods. Large scale evaluations
on 480 images from a lung cancer screening trial, showed good reproducibility
of the obtained airway abnormality measures and a significant correlation with
lung function.
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