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Abstract—This paper describes a framework for establishing a
reference airway tree segmentation, which was used to quantita-
tively evaluate fifteen different airway tree extraction algorithms
in a standardized manner. Because of the sheer difficulty involved
in manually constructing a complete reference standard from
scratch, we propose to construct the reference using results from
all algorithms that are to be evaluated. We start by subdividing
each segmented airway tree into its individual branch segments.
Each branch segment is then visually scored by trained observers
to determine whether or not it is a correctly segmented part of the
airway tree. Finally, the reference airway trees are constructed
by taking the union of all correctly extracted branch segments.
Fifteen airway tree extraction algorithms from different research
groups are evaluated on a diverse set of twenty chest computed
tomography (CT) scans of subjects ranging from healthy vol-
unteers to patients with severe pathologies, scanned at different
sites, with different CT scanner brands, models, and scanning
protocols. Three performance measures covering different aspects
of segmentation quality were computed for all participating
algorithms. Results from the evaluation showed that no single
algorithm could extract more than an average of 74% of the
total length of all branches in the reference standard, indicating
substantial differences between the algorithms. A fusion scheme
that obtained superior results is presented, demonstrating that
there is complementary information provided by the different
algorithms and there is still room for further improvements in
airway segmentation algorithms.

Index Terms—Pulmonary airways, computed tomography, seg-
mentation, evaluation.

I. INTRODUCTION

T HE segmentation of airway trees in chest volumetric
computed tomography (CT) scans plays an important role

in the analysis of lung diseases. One application of airway
tree segmentation is in the measurement of airway lumen and
wall dimensions, which have been shown to correlate well
with the presence of chronic obstructive pulmonary disease
(COPD) [1], [2]. As the lungs are subdivided anatomically
based on the airway tree, airway tree segmentation is also a
useful input for other segmentation tasks such as segmentation
of lobes [3], [4] and pulmonary segments [5], [6]. Airway
segmentation is also a prerequisite for virtual bronchoscopy,
which has increasingly been used to facilitate planning and
guidance of bronchoscopic interventions [7], [8].

Several automated methods have been proposed to segment
the airway tree from CT images. Evaluation of these methods
has been problematic. Manual segmentation of airways is
a diff cult and very time consuming task due to the com-
plexity of the 3D structure of the airway tree. In addition,
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low contrast in the peripheral branches may make manual
detection, inevitably performed in 2D views, unreliable. Most
methods have been evaluated qualitatively based on visual
inspection or were compared quantitatively to more basic
techniques such as region growing [9]–[16]. Some authors
performed manual evaluation without constructing a ground
truth segmentation. Tschirren et al. assessed the detection rate
of their algorithm by manually assigning anatomical labels
to detected branches [11], while Fetita et al. compared the
number of automatically detected branches to the number
of bronchial sections detected manually [17]. Other authors
compared their results to segmentations obtained interactively,
e.g., by region growing with manually selected thresholds [13],
[15], or by manually removing “leaks” from the results of
their proposed methods [18]–[20]. Graham et al. [8] obtained
a ground truth for three airway trees from thin slice CT
scans (1112 branches in total) using an interactive live-wire
segmentation method for evaluation purposes. A drawback of
such interactively obtained segmentations is that they may be
biased to the algorithms used in their construction and are thus
less suitable for comparing different methods. Although not
very common, in some cases, a ground truth was constructed
fully manually for evaluation. In [21]–[23], a single reference
image is manually segmented, while Aykac et al. manually
segment eight scans (471 branches in total) with 3 mm
slices [24]. Because of the time required for manual annotation
in these studies, evaluation was restricted to a small number
of cases and inter-observer agreement was not studied.

The aim of this paper is to develop a framework to establish
a reference airway tree segmentation that can be used to evalu-
ate different airway tree extraction algorithms in a standardized
manner. We believe that such standardized comparison of
different algorithms is critical for future development, as the
weaknesses of the different algorithms can be identif ed and
possibly improved upon. Because of the sheer diff culty in
manually establishing a complete reference standard from
scratch, we propose to construct the reference from the results
of the algorithms being evaluated. Segmented airway trees are
f rst subdivided into their individual branches. These individual
branches are then visually scored by trained observers and
correctly segmented branches are retained, while incorrectly
segmented branches are rejected. Airway segmentations pro-
duced by different algorithms on the same image will overlap
to a certain extent. Therefore, the branch inspection process
can be accelerated by automatically accepting branches that
overlap with previously accepted branches. Finally, the ref-
erence standard is computed as the union of all accepted
branches.

We use forty scans from eight different institutions. Scans
were obtained under various acquisition conditions and with
different scanners, at full inspiration or full expiration, and
with a variety of pathological abnormalities. The f rst twenty
scans are designated as a training set, and can be used to train
and optimize algorithms. The remaining twenty scans are used
as a testing set to evaluate the different algorithms.

The evaluation is designed to only take into consideration
the depth of the airway trees extracted by an algorithm. We do
not take the exact airway shape and dimensions into account:

a branch is said to be correct as long as there is no signif cant
leakage outside the airway walls.

This paper is based on the results of a comparative study
that was organized at the 2nd International Workshop on
Pulmonary Image Analysis1, which was held in conjunction
with the 12th International Conference on Medical Image
Computing and Computer Assisted Intervention (MICCAI
2009). Invitations were sent out to several mailing lists and
to authors of published papers on airway tree segmentation.
A total of 22 teams registered to download the data, and 15
teams [14], [25]–[38] submitted their results. This paper is
based on the results of these 15 algorithms and as such presents
a thorough, though not exhaustive, comparison of currently
available algorithms. Ten teams [14], [25], [26], [28], [30],
[32], [33], [35]–[37] submitted to the fully automated category
and f ve teams [27], [29], [31], [34], [38] submitted to the
semi-automated category. All results were used to establish
the reference standard.

The evaluation results of the f fteen algorithms are the same
as those reported in [39] and on the EXACT’09 website2. In
this work, we thoroughly investigate algorithm performance
by estimating the number of branches missed in our reference
standard and by including local sensitivity analysis up to the
segmental level, and we study the improvements that can
be obtained by combining the results produced by different
algorithms in a fusion framework.

II. DATA

A total of 75 chest CT scans were contributed by eight
different institutions. The scans were acquired with several
different CT scanner brands and models, using a variety of
scanning protocols and reconstruction parameters. The con-
ditions of the scanned subjects varied widely, ranging from
healthy volunteers to patients showing severe abnormalities in
the airways or lung parenchyma. From the contributed scans,
we selected forty scans for this study; a training set and a
testing set of twenty scans each. All f les were completely
anonymized. An equal number of scans of similar quality,
acquired at the same institutions and with similar protocols
were included in both the training and testing sets, with no
scans of the same subject included in both sets. We did not
ensure that scans with similar anomalies were included in the
training and testing sets. However, as the scans from both sets
were from the same trial or clinical studies, it is likely that
the scans from both sets were similar in terms of anomalies
as well.

The images in the training set were named CASE01 through
CASE20, and the images in the testing set were named
CASE21 through CASE40. Table I presents acquisition pa-
rameters, a visual scoring of noise level, and a brief report of
anomalies provided by a chest radiologist for the twenty test
cases.

III. AIRWAY BRANCH SCORING

This section describes how each airway branch segment is
evaluated. We f rst describe how an airway tree segmentation

1See http://www.lungworkshop.org/2009/
2See http://image.diku.dk/exact/
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TABLE I
ACQUISITION PARAMETERS OF THE 20 TEST CASES. SLICE THICKNESS (T) IS GIVEN IN MM. TUBE VOLTAGE (TV) IS GIVEN IN KVP. AVERAGE TUBE
CURRENT (TC) IS GIVEN IN MA. THE LEVEL OF INSPIRATION (LI) INDICATES WHETHER THE SCAN IS ACQUIRED AT FULL INSPIRATION (I) OR FULL

EXPIRATION (E) WITH BREATH-HOLD. CONTRAST (C) INDICATES WHETHER INTRAVENOUS CONTRAST WAS USED DURING ACQUISITION (“Y” FOR YES
AND “N” FOR NO). PERCEIVED RECONSTRUCTION (R) INDICATES WHETHER THE SCAN WAS RECONSTRUCTED USING A SOFT (S), MIDDLE (M) OR HARD
(H) RECONSTRUCTION KERNEL, BASED ON VISUAL INSPECTION. THE NOISE LEVEL (N) OF THE SCAN IS SCORED BY VISUAL INSPECTION AS HIGH (H),

MIDDLE (M) OR LOW (L). ∗ INDICATES THAT A SCAN IS FROM THE SAME SUBJECT AS THE PRECEDING SCAN.

T Scanner Kernel TV TC LI C R N Anomalies
CASE21 0.6 Siemens Sensation 64 B50f 120 200.0 E N H H None
CASE22∗ 0.6 Siemens Sensation 64 B50f 120 200.0 I N H H None
CASE23 0.75 Siemens Sensation 64 B50f 120 200.0 I N H M None
CASE24 1 Toshiba Aquilion FC12 120 10.0 I N M H Small lung nodule
CASE25∗ 1 Toshiba Aquilion FC10 120 150.0 I N M M Small lung nodule
CASE26 1 Toshiba Aquilion FC12 120 10.0 I N M H Intraf ssural f uid
CASE27∗ 1 Toshiba Aquilion FC10 120 150.0 I N M M Lympheadenopathy, bronchial wall thickening, air-

way collapse, septal thickening, intraf ssural f uid
CASE28 1.25 Siemens Volume Zoom B30f 120 348.0 I Y M L None
CASE29∗ 1.25 Siemens Volume Zoom B50f 120 348.0 I Y M L None
CASE30 1 Philips Mx8000 IDT 16 D 140 120.0 I N M M Diffuse ground glass
CASE31 1 Philips Mx8000 IDT 16 D 140 120.0 I N M L Diffuse emphysema
CASE32 1 Philips Mx8000 IDT 16 D 140 120.0 I N M L Pleural plaques, mucus plug right lower lobe, few

nodules
CASE33 1 Siemens Sensation 16 B60f 120 103.6 I N H H Mild bronchiectasis, mucus plugging, tree-in-bud

pattern/small inf ltrates
CASE34 1 Siemens Sensation 16 B60f 120 321.0 I N H M Mild bronchiectasis, mucus plugging, tree-in-bud

pattern/small inf ltrates
CASE35 0.625 GE LightSpeed 16 Standard 120 411.5 I N M M None
CASE36 1 Philips Brilliance 16P C 120 206.0 I N S L Bronchiectasis, bronchial wall thickening, mucus

plugs, inf ltrates
CASE37 1 Philips Brilliance 16P B 140 64.0 I N M M None
CASE38∗ 1 Philips Brilliance 16P C 120 51.0 E N M H Air trapping
CASE39 1 Siemens Sensation 16 B70f 100 336.7 I Y H H Extensive bronchiectasis, many inf ltrates and atelec-

tasis, tree-in-bud, mucus plugging, central airway
distortion

CASE40 1 Siemens Sensation 16 B70s 120 90.6 I N H L Extensive areas with ground glass

is subdivided into its individual branch segments. Next, we
explain how a branch segment is presented to a human
observer for visual assessment. The different labels used for
scoring are then detailed. The rules to determine whether a
branch segment requires visual assessment or can be accepted
automatically are then introduced. Finally, we end this sub-
section by describing how the human observers were trained.

A. Subdividing an airway tree into branches

To enable evaluation of individual branches, an airway
tree is f rst subdivided into its branches by a wave front
propagation algorithm that detects bifurcations, as described
in [40]. The key concept is that a wave front, propagating
through a tree structure, remains connected until it encounters
a bifurcation, and side branches can thus be detected as
disconnected components in the wave front.

The front is propagated using the fast marching algo-
rithm [41], [42], with a speed function that is equal to one
inside and zero outside the segmented structure, thus limiting
the front to only propagate within the segmented structure.
The number of disconnected components is monitored by
applying connected component analysis to the “trial” points
in the front each time the front has moved a distance equal
to the average distance between two voxels. If the front
contains multiple disconnected components, the propagation
proceeds by starting from the individual detected components
and growing into the child branches. The process ends after the
complete segmentation has been evaluated. During the front
propagation, the centroid of the front is stored at every step to

(a) (b) (c) (d)

Fig. 1. Illustration of how an airway tree is subdivided into individual
branches. (a) A seed point is placed at the root of a tree to initiate a front
propagation process. (b) The centroid of the propagating front is stored as
centerline during propagation. (c) The propagation is stopped when the front
splits at a bifurcation, and new seeds are obtained from the individual split
fronts. (d) The front propagation process is repeated from the new seed points.

obtain the centerlines. Figure 1 illustrates the steps involved
in the airway tree subdivision.

B. Display

Visual assessment of each branch is conducted by displaying
a f xed number of slices through the branch at different posi-
tions and orientations. Two different views are used to obtain
the slices: a reformatted view that straightens the centerline of
a branch segment, and a reoriented view that rotates the branch
segment such that its main axis coincides with the x-axis.

Eight slices are extracted from the reformatted view. A
schematic view of the slices are shown in Figure 2(b). The
f rst four slices (A1, A2, A3 and A4) are taken perpendicular
to the centerline, distributed evenly from the start to the end of
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(a)

(b) (c)

Fig. 2. Schematics showing the (a) original airway, (b) reformatted and (c)
reoriented views. The arrow is the main orientation of the airway and the cut
planes are shown in blue.

the centerline. The remaining four slices (P1, P2, P3, and P4)
are taken along the centerline, at cut planes that are angled at
0◦, 45◦, 90◦ and 135◦.

For the reoriented view, nine slices are extracted, consisting
of three slices from each of the axial, sagittal, and coronal
planes. Figure 2(c) presents a schematic view of the slices.
For the slices in the sagittal (S1, S2 and S3) and coronal (C1,
C2, and C3) planes, the slices are placed at 15%, 50%, and
85% of the branch width measured along the axis normal to
the plane. On the axial plane (X1, X2 and X3), the slices are
placed at 5%, 50%, and 95% of the branch length.

The segmentation is shown as a colored overlay on these
slices. The user can toggle between the different views and
toggle the overlay on and off for better assessment of the
underlying structure. Figure 3 shows examples of the two
views for a correctly segmented branch and a branch where
the segmentation has leaked outside of the branch. The various
slice display parameters for the two views were determined
based on a trial study, in which we found the best trade off
between the accuracy of the human observer’s scores and the
time required to score a single airway branch segment.

C. Scoring of branches by trained observers

The process of scoring the individual branches of all submit-
ted segmentations was distributed among ten trained observers
through a web-based system. The observers were all medical
students who were familiar with CT and chest anatomy.

Using the slice display described in Section III-B, observers
were asked to assign to each branch one of the following four
labels: “correct”, “partly wrong”, “wrong” or “unknown”. A
branch is scored as “correct” if it does not have leakage outside
the airway wall. “Partly wrong” is assigned to a branch if
part of the branch lies well within the airway lumen and the
remaining part of it lies outside the airway wall. A branch
is “wrong” if it does not contain airway lumen at all. The

“unknown” label is used when the observers are unable to
determine whether a branch is an airway or not.

The scoring of each branch is performed in two phases.
In phase one, two observers are assigned to score a branch.
If both observers assigned the same label, the scoring is
complete. Otherwise, the scoring proceeds to phase two, where
three new observers are assigned to re-score the branch. In this
phase, the f nal score assigned to the branch is the label that
constitutes the majority vote among the three new observers.
In the case where there is no majority, the branch is scored as
“unknown”.

To reduce the number of branches that observers needed
to score and thus speed up the scoring process, branches
that are very similar to previously scored branches that were
labeled as “correct” are accepted automatically. Comparison
with previously scored branches is achieved through the use
of an intermediate reference, which is the union of all branches
up till now that have “correct” as their f nal label. We use the
following two criteria:

1) Centerline overlap: Every point in the centerline is
within a 26-neighborhood to a “correct” voxel in the
intermediate reference result.

2) Volume overlap: At least 80% of the voxels of the branch
are scored as “correct” in the intermediate reference
result. Our experiments in a pilot study showed that
this threshold of 80% was able to avoid automatically
accepting wrong branch segments while not being overly
sensitive to small variations.

Branches that fulf ll both criteria are automatically scored as
“correct” and are exempt from the manual scoring process.

Once all branches from the results of all participating teams
are scored, we compute the f nal reference segmentation for
a given image by taking the union of all voxels labeled as
“correct” in that image. For the remaining voxels, the voxels
that are labeled as “unknown” in the scoring process will be
ignored during the evaluation, while the rest are treated as
“wrong”.

D. Training of human observers

Ten observers took part in the visual scoring. They received
a study protocol with scoring instructions, explanations of the
software and the different views, and several screenshots of the
two views for examples of correct, wrong, and partly wrong
segmented branches. Hands-on instruction sessions were set
up to further instruct the observers on the evaluation software
and scoring procedure. During these sessions, the observers
scored at least two complete airway tree segmentations (with
the automated branch acceptance option disabled) under the
supervision of an experienced observer. The f rst four ob-
servers were trained this way by the f rst author. The other six
observers were trained by one or more of their colleagues, and
their agreement with the scores by the experienced observers
was computed. When their disagreement with the experienced
observers exceeded 10%, an extra session (needed for only 2
out of 10 observers) was held where the errors and correct
scores were pointed out.
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(a) (b)

Fig. 3. Example of the reformatted (top panel) and reoriented (bottom panel) views for (a) a correctly extracted branch and (b) a branch with leaks. The
alpha numeric characters in the individual images refer to the different cut planes as shown in Figure 2.

IV. ALGORITHMS FOR AIRWAY EXTRACTION

Ten fully automated algorithms and f ve semi-automated
algorithms (indicated by ∗) are evaluated in this study. Fully
automated algorithms require no manual initialization or inter-
action and use the same settings for all scans processed. Semi-
automated algorithms require user initialization or interaction,
which varied from placing a single seed point or selection of
certain parameters, to extensive interaction by manually adding
or removing complete branches. All evaluated algorithms are
brief y described below and an indication of the required
processing time per case is provided. All operations are
performed in 3D, unless otherwise stated.

1) Morphology based segmentation:Irving et al. [25] use
gray scale morphological f ltering and reconstruction to detect
potential airway regions. The airways are then segmented by
a closed space dilation with leakage detection on the marked
region. The method takes an average of 71 minutes per image
on a 2.83 GHz personal computer (PC).

2) Morphological aggregative:Fetita et al. [26] detect
airway candidates using the f ood size-drain leveling morpho-
logical operator. The airway tree is reconstructed by several
propagation schemes applied iteratively to encourage propaga-
tion within airways and avoid leakage to the lung parenchyma.
Scans are pre-f ltered using f lter parameters derived from the
training set, which are dependent on the scanner model, re-
construction kernel, and dosage. The process takes on average
5 minutes per image.

3∗) Adaptive cylinder constrained region growing:Pinho et
al. [27] proposed a method to automatically detect the starting
point of the trachea and to segment airway branches by ap-

plying region growing iteratively within cylindrical volumes of
interest. A simplif ed skeleton constructed based on the starting
point and end points of a branch segment is used to estimate
the heights, radii and orientations of the cylindrical volumes
of interests in the next iteration. A neighbor aff nity technique
is used to avoid leaks in the region growing algorithm. The
method requires specif c tuning of the parameter involving the
height of the cylindrical volume of interest for certain cases.
Segmentation of an image requires less than 8 seconds for
most cases on a 2.4 GHz PC.

4) Adaptive region growing and local image enhancement:
Feuerstein et al. [28] proposed a tracing scheme that uses
cubical volumes constructed based on the orientation and
radius of detected branches. The volumes are locally enhanced
using a sharpening f lter based on a Laplacian of Gaussian
kernel. A region growing process is iterated within each of the
cubical volumes until a suitable threshold is found, determined
by the number of furcating branches. The method takes on
average 5 minutes per image on a 2.66 GHz PC.

5) Voxel classification and vessel orientation similarity:Lo
et al. [14] perform region growing on the output of a voxel
classif er that is trained to differentiate between airway and
non-airway voxels. An additional criterion in the region grow-
ing allows inclusion of lower probability airway candidates if
their orientation is suff ciently similar to that of a nearby blood
vessel, exploiting the fact that airways and arteries run parallel
to each other. The framework takes approximately 90 minutes
per image on a 2.66 GHz PC.

6∗) Two-pass region growing and morphological gradient:
Fabijańska [29] proposed a two step segmentation approach.

http://dx.doi.org/10.1109/TMI.2012.2209674
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The f rst step consists of obtaining an initial segmentation by
performing region growing on an image where the intensities
are normalized. The initial segmentation is then used as seeds
for a second region growing process that is performed on
the morphological gradient of the original image. The method
requires manual selection of a threshold related to the second
region growing in some cases. Computation time is less than
10 minutes for a typical chest CT on a 1.66 GHz PC.

7) Tube detection and linking:Bauer et al. [30] proposed
a method to reconstruct the airway tree from detected airway
branches. Therefore, they utilize a tube detection f lter with a
ridge traversal procedure to extract centerlines of dark tubular
structures in the CT image. The airway tree is reconstructed
starting from the trachea by iteratively connecting these tubular
structures. During this process, prior knowledge about the
structure of the airway tree, such a branching angle and
radius, is used. Segmentation of a single dataset takes on
average 3 minutes using a graphics processing unit (GPU)
based implementation of the tube detection f lter.

8∗) Maximal contrast adaptive region growing:Mendoza et
al. [31] use region growing with maximal-contrast stopping
criteria. Local non-linear normalization using a sigmoidal
transfer function and denoising via an in-slice bidimensional
median f lter are introduced to improve robustness. The
method requires the user to manually initialize several seeds
in the trachea region so that the statistical nature of air density
values can be characterized for each case. Segmentation of a
single case requires on average 2 minutes on a 2 GHz PC.

9) Centricity-based region growing:Wiemker et al. [32]
proposed a voxel-wise centricity measure in combination with
prioritized region growing. The centricity measure quantif es
how central a given voxel is to the surrounding airway walls
by measuring the lengths of rays cast isotropically in 3
dimensions. A ray terminates if the intensity difference, with
respect to the starting point, of a point along a ray is higher
than a certain threshold. A region growing process is used
to obtain the actual segmentation, where it proceeds until all
connected voxels below a certain intensity threshold and above
a certain minimum centricity value are extracted. The runtime
of the method for an image is 19 seconds on average on a 3
GHz PC.

10) Adaptive region growing within local cylindrical vol-
umes of interest:Lee et al. [33] proposed another local
adaptive region growing method. To avoid leaks, the region
growing is performed within local volumes of interest and
requires that at least half of the neighbors of a candidate voxel
are below a certain threshold. The threshold is incremented
until leaks are detected. Segmentation of an image takes less
than 30 seconds on a 3 GHz PC.

11∗) Template matching:Born et al. [34] proposed 2D
template matching technique and a set of fuzzy rules to detect
and prevent leakage. Airway tree segmentation is obtained
through an iterative procedure that iterates between 3D region
growing, 2D wave propagation and 2D template matching.
Their method requires the user to set a seed point in the trachea
manually. The method takes around 25 seconds per image on
a 2.4 GHz PC.

12) Adaptive region growing with histogram correction:

Weinheimer et al. [35] proposed an adaptive region growing
approach that monitors the volume of the segmented region,
and increases the threshold if no leakage is detected. The
acceptance criteria in the region growing process are based
on fuzzy logic rules and on rays cast from the voxel in the
axial, coronal, and sagittal plane. Histogram analysis is used
to preprocess the CT scan and to dynamically adapt the fuzzy
logic rules based criteria to different images. An average of 3
minutes is required to segment a case on a 2.83 GHz PC.

13) Gradient vector flow:Bauer(a) et al. [36] proposed
a method utilizing properties of the Gradient Vector Flow
(GVF) [43] vector f eld. A measure of tube-likeness is com-
puted for every voxel based on the vector f eld obtained
from the GVF. Subsequently, the airway tree centerlines are
extracted by applying hysteresis thresholding on the tube-
likeness map. The f nal segmentation is obtained by following
the gradient f ow path in the inverse direction and adding the
voxels along the path until maximum gradient magnitude is
reached. Using a GPU based implementation of the GVF, the
method requires 6 minutes to process a dataset.

14) Multi-threshold region growing:Van Rikxoort et al. [37]
proposed a wavefront propagation approached that is based on
sphere constricted region growing, where geometric character-
istics of a branch such as furcation and radius are obtained
from the propagating front. A series of rules, such as radius
growth, furcating angles, etc., are used to detect and prevent
leaks. The method also features a multi-threshold approach,
where the threshold used is increased as long as no leaks are
detected. Segmentation of an image takes around 10 seconds
on a single-core PC.

15∗) Automated region growing with manual branch adding
and leak trimming:Tschirren et al. [38] proposed an inter-
active segmentation tool. An initial airway tree segmentation
obtained with a region growing method that uses an optimal
threshold selected based on the volume of the extracted region.
The tree is subdivided in branches by skeletonization. The user
can manually select leaks to remove and add new branches
by placing seed points. The new branches are formed using
region growing and connected to the initial segmentation using
the Dijkstra algorithm. An average of 59 minutes of human
interaction time is required to segment a single image.

To assess whether the different algorithms provide comple-
mentary information and whether results can be improved by
combining algorithms, we evaluate additional segmentations
that combine segmentation results from several algorithms. A
voxel based fusion scheme is used for this purpose, in which
a voxel is labeled as part of the airway tree if it is marked as
airways by at least Tf algorithms.

We use sequential forward selection (SFS) to select which
algorithms to include in the fusion schemes. The SFS proce-
dure starts with the algorithm that produced the maximum total
tree length, and at each subsequent iteration adds the algorithm
that gives the largest increase in the total tree length obtained
by the combined segmentations. In addition, we investigated
fusion schemes including only the fully automatic algorithms,
as well as algorithm selection based on computation time.

http://dx.doi.org/10.1109/TMI.2012.2209674
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V. EVALUATION METRICS

In order to compare the results of the different algorithms
in a standardized manner, centerlines are f rst computed for
all segmentation results and for the reference, using the
algorithms described in Section IV. To determine the length
of a branch in a given segmentation, we compute the length
of the centerline of that branch after projection to the refer-
ence segmentation centerline. In this way, a bias due to, for
example, high tortuosity in the supplied centerline, is avoided.
Branches are counted as “detected” by the segmentation results
of an algorithm if they are at least ∆l = 1 mm long.

Three performance measures are computed for each seg-
mented airway tree:

1) Branches detected: The percentage of branches that are
detected correctly with respect to the total number of
branches present in the reference, Nref , def ned as

Nseg

Nref

× 100%

where Nseg is the number of branches detected correctly
by the segmentation.

2) Tree length detected: The fraction of tree length that is
detected correctly relative to the total tree length in the
reference, Lref , def ned as

Lseg

Lref

× 100%

where Lseg is the total length of all branches detected
by the segmentation.

3) False positive rate: The fraction of the segmented voxels
that is not marked as “correct” in the reference, def ned
as

Nw

Nc +Nw

× 100%

where Nc and Nw are the number of voxels in the
segmented airway that overlap with the “correct” and
“wrong” regions in the reference respectively. Note that
“unknown” regions in the reference are not included in
the calculation of the false positive rate.

The trachea is excluded from all measures. Further, for mea-
sure 3, the left and right main bronchi are excluded as well.

VI. RESULTS

A. Observer agreement

A total of 40,772 branches were evaluated. Among these,
52.16% were accepted automatically, 33.16% were assigned a
f nal score at phase 1, and 14.67% were assigned a f nal score
at phase 2. Of the branches, 82.59% were scored as “correct”,
10.77% were scored as “wrong”, 5.51% were scored as “partly
wrong” and 1.13% were scored as “unknown”.

The f nal reference segmentation contained 81.02% voxels
labeled as correct, 11.16% as “partly wrong”, 7.12% as
“wrong”, and 0.70% as “unknown”, where the trachea and
the left and right main bronchi were excluded when computing
the percentages. We found that most voxels inside the airway
lumen that were originally part of a “partly wrong” branch
were detected correctly by one of the other algorithms and

TABLE II
CONFUSION MATRIX OF OBSERVER SCORES, WHERE THE COLUMNS

INDICATE THE SCORES ASSIGNED BY THE OBSERVERS AND THE ROWS
INDICATE THE FINAL SCORES USED TO CONSTRUCT THE REFERENCE.

Observer
Correct Partly wrong Wrong Unknown

F
in

al

Correct 23,666 1,626 364 47
Partly wrong 1,885 6,319 685 30

Wrong 2,723 1,843 13,135 476
Unknown 768 657 764 87

TABLE III
THE NUMBER OF SCORES # FROM ALL OBSERVERS AND AVERAGE

AGREEMENT ACROSS OBSERVERS FOR BRANCHES OF DIFFERENT SIZES,
MEASURED IN NUMBER OF VOXELS.

Size # Mean agreement(%)
≤ 200 36,385 77.88

>200 & ≤400 8,421 82.90
>400 & ≤600 4,264 86.78
>600 & ≤800 2,249 85.83
>800 & ≤1000 1,269 87.46
>1000 & ≤1200 783 87.71
>1200 & ≤1400 486 87.13

>1400 1,218 92.02

were relabeled as “correct”. We therefore counted the remain-
ing “partly wrong” voxels as “wrong”, while all “unknown”
voxels were ignored in the evaluation.

Table II presents the confusion matrix of the 55,075 individ-
ual scores given by the observers (in both phases of the scoring
process) in comparison to the f nal scores for each branch. The
average percentage of assigned scores that were in agreement
with the f nal scores was 80.31%, with a standard deviation
of 10.68%. In this computation, observers are counted as in
agreement irrespective of their original score if the f nal score
is “unknown”. The majority of disagreement is between the
labels ”partly wrong” and ”correct” or ”wrong”; in 5.6% of
cases, there is disagreement whether a branch is “correct” or
“wrong”. Table III presents the average agreement between the
scores from the observers and the f nal scores for branches of
different sizes, where the size is given in terms of number of
voxels.

B. Completeness of the established reference

The reference standard in this work is based on visual
assessment of the correctness of airway branches produced
by any of the participating algorithms. Therefore it does not
include airways that were missed by all algorithms, and thus
the two sensitivity measures reported in this study, branches
detected and tree length detected, have been overestimated. In
order to provide a rough estimate of the number of missing
branches in the reference standard, an additional observer
study was conducted. A trained human observer inspected 200
random axial slices from the 20 test scans. For these slices,
the lung masks and the overlay with the reference airway
segmentation could be toggled on and off, and inspection
in 3D with coronal and sagittal views was available. The
observer clicked every point that he deemed could represent
a missed airway branch, inspected the three orthogonal views
and scrolled through the axial slices and decided if this was
indeed a missed branch. If the branch bifurcated and child

http://dx.doi.org/10.1109/TMI.2012.2209674
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Fig. 4. Average tree length versus average false positive rate of all algorithms,
with the algorithms in the semi-automated category in red. The fusion scheme
(Tf = 2) combining all 15 algorithms is indicated with ⋆. The blue line
indicates the fusion results of including different number of algorithms,
starting from 2 to all 15 algorithms.

branches were visible in the same slice, these child branches
were indicated as well.

The reference standard contained on average 247.9 branches
per scan. The observer added on average 0.56 airways per
slice. From the reference standard, we computed that each
of the terminal branches is visible in 9.6 slices on average.
The test scans contained on average 431 slices. From these
numbers we can compute that on average 25.1 branches were
missed per scan (0.56 × 431 / 9.6), and this is around 10%
of all branches in the reference.

C. Comparison of algorithms

Table IV(A) presents the three evaluation measures for
the 15 algorithms. The evaluation measures for the fusion
scheme with SFS procedure are given in Table IV(B). Figure 4
gives an overview of the average performance of the different
algorithms using a scatter plot of tree length detected versus
false positive rate. Figure 5 shows box plots of tree length
and false positive rate for the different algorithms. Box plots
in Figure 6 give the number of correctly detected branches
and the volume of the “wrong” voxels, or leakage volume,
per case.

In the box plots, the red line indicates the median, and the
lower and upper edge of the box indicate the 25th and 75th
percentile respectively. The lines below and above the box, or
“whiskers”, represent the largest and smallest values that are
within 1.5 times the interquartile range, while the red open
circles show all outliers outside this range.

Surface renderings of two cases are given in Figure 7 and
Figure 8, with correct and wrong regions indicated in green
and red respectively.

D. Local sensitivity analysis

We evaluated the detection rate of different anatomical
branches for all algorithms. Anatomical branch labels were
assigned manually in the reference airway trees down to the
segmental bronchi using the Pulmonary Workstation software

(a)

(b)

Fig. 5. Box plots of (a) tree length and (b) false positive rate of the algorithms.
The fusion scheme combining all 15 algorithms is indicated with ⋆.

package (VIDA Diagnostics, Coralville, Iowa, USA). Fig-
ure 9a shows a surface rendering of the manually labeled
reference airway tree, with the different anatomical labels
shown using different colors. For each labeled branch in the
reference, we determine whether an algorithm detects the
branch by comparing branch centerlines. Figure 9b presents
a diagram showing the sensitivity of the algorithms to the
different anatomical labeled branches, which is def ned as
the number of algorithms that detected (part of) a branch
by the total number of algorithms. A scatter plot of the
average sensitivity for the lobar and segmental branches for
the individual algorithms is given in Figure 10.

E. Combination of algorithms

Figure 13 shows a bar plot of the percentage of branches
detected versus the number of algorithms that detected them,
averaged across all test cases. Figure 12 shows the surface ren-
derings of the reference segmentations of the test set, with the
branches color coded according to the number of algorithms
that detected them. More than 30% of the branches were on
average extracted by three algorithms or less. A fusion scheme
that combines results from all participating algorithms, as
proposed in Section VI-E, was able to extract more complete
airway trees than any of the individual algorithms, as can be
seen in Table IV and Figure 4. The results from the fusion
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TABLE IV

(A) Evaluation measures averaged across the 20 test cases of each algorithm.
* indicates teams in the semi-automated category.

(B) Evaluation measures, averaged across the test cases, of the fusion scheme
using different number of algorithms with Tf = 2. The actual algorithms,
selected by SFS, are indicated in the brackets beside the number of algorithms
used.

Branches Tree length False positive
detected (%) detected (%) rate (%)

(1) Irving et al. 43.5 36.4 1.27
(2) Fetita et al. 62.8 55.9 1.96
(3∗) Pinho et al. 32.1 26.9 3.63
(4) Feuerstein et al. 76.5 73.3 15.56
(5) Lo et al. 59.8 54.0 0.11
(6∗) Fabijańska 36.7 31.3 0.92
(7) Bauer et al. 57.9 55.2 2.44
(8∗) Mendoza et al. 30.9 26.9 1.75
(9) Wiemker et al. 56.0 47.1 1.58
(10) Lee et al. 32.4 28.1 0.11
(11∗) Born et al. 41.7 34.5 0.41
(12) Weinheimer et al. 53.8 46.6 2.47
(13) Bauer(a) et al. 63.0 58.4 1.44
(14) van Rikxoort et al. 67.2 57.0 7.27
(15∗) Tschirren et al. 63.1 58.9 1.19
Fusion of 15 algorithms
(Tf = 2) 84.3 78.8 1.22

number of Branch Tree length False positive
algorithms detected (%) detected (%) rate (%)
2 (4 & 2) 56.2 49.0 0.22
3 (+15) 67.1 60.6 0.29
4 (+13) 72.9 66.6 0.33
5 (+14) 77.3 70.4 0.49
6 (+7) 79.0 73.4 0.58
7 (+5) 80.9 75.9 0.60
8 (+12) 82.2 77.1 0.84
9 (+1) 83.1 77.8 0.86
10 (+9) 83.9 78.4 1.08
11 (+11) 84.3 78.6 1.08
12 (+6) 84.1 78.8 1.14
13 (+8) 84.2 78.8 1.15
14 (+10) 84.2 78.8 1.16
15 (+3) 84.3 78.8 1.22

(a)

(b)

Fig. 6. Box plots of (a) branch count and (b) leakage volume, with the
maximum leakage volume clipped at 4000 mm3, of the 20 test cases computed
across the 15 participating algorithms.

scheme have the highest average tree length with a relatively
low average false positive rate. The blue line in Figure 4 shows
the improvement in performance of the fusion scheme with an
increasing number of algorithms included in the selection.

A Tf of two was used for the f nal fusion scheme shown in

(1) (2) (3) (4)

(5) (6) (7) (8)

(9) (10) (11) (12)

(13) (14) (15) ⋆

Fig. 7. Surface renderings of results for case 23, with correct and wrong
regions shown in green and red respectively.

Table IV and Figure 4. It was observed that although further
increasing Tf reduces the false positive rate, the tree length
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(1) (2) (3) (4)

(5) (6) (7) (8)

(9) (10) (11) (12)

(13) (14) (15) ⋆

Fig. 8. Surface renderings of results for case 36, with correct and wrong
regions shown in green and red respectively.

detected and branches detected were greatly reduced as well.
For example, with Tf = 3, the resulting false positive rate, tree
length detected and branches detected were 0.14%, 66.4% and
74% respectively. False positive rate was observed to drop to
0% at Tf = 7, with 44.3% of tree length detected and 53.1%
of branches detected.

The results of the fusion scheme in Table IV(B) consist of
algorithms from both the automated and the semi-automated
category. To investigate the usage of the fusion scheme in a
more practical setting, we performed additional experiments
using the sequence from SFS from Table IV(B) with semi-
automated algorithms excluded. We also investigate the effects
of incrementally fusing from the least to the most computa-
tionally intensive algorithms, based on the reported average
execution time required per case, in the following sequence:
algorithm 14, 9, 10, 7, 12, 4, 2, 13, 1 and 5. Figure 11 shows a
graph of tree length detected against false positive rate of the
fusion scheme with increasing number of algorithms included,
for the sequence obtained from SFS and based on the reported
execution time.

(a)

(b)

Fig. 9. (a) An example of a reference airway segmentation with the
manually assigned anatomical labels, where the different colors indicate
different anatomical labels. (b) Branch detection sensitivity for different
labeled branches averaged over all cases.

Fig. 10. Scatter plot of the sensitivity, averaged over all cases, of the lobar
and segmental branches for the 15 algorithms.

VII. DISCUSSIONS

A. Performance of different algorithms

Fifteen algorithms for airway extraction have been com-
pared in this study. Performance varies widely, as is most
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Fig. 11. Tree length detected and false positive rate for an increasing number
of fully automated algorithms included in the fusion scheme, with sequence
based on SFS and on execution time from fastest to slowest.

obvious from the renderings in Figures 7 and 8. There is
a clear tradeoff between sensitivity and specif city in the
airway tree extracted by the different algorithms. This is shown
in Figure 4 and Figure 5, where it is observed that more
complete trees are often accompanied by more false positives.
The most conservative algorithm, algorithm 10, obtains the
smallest average false positive rate (0.1%) and is also among
the algorithms with the lowest average tree length (32.4%). On
the other hand, algorithm 4 is the most explorative algorithm,
yielding the highest average tree length (76.5%), but at the
expense of the highest average false positive rate (15.6%).

In general, semi-automatic algorithms perform no better
than fully automatic algorithms. This is probably due to the
fact that manual interactions for semi-automatic algorithms
are limited to selecting initial seed points for the trachea
(algorithm 8 and 11) or tuning parameters manually (algorithm
3 and 6) for a few test cases. The only algorithm with extensive
interaction is algorithm 15, where branches could be added
or removed by users until they were satisf ed with the f nal
segmentation result. Despite the interaction time of on average
one hour per case, the overall results for the performance
metrics used in this study are close to those of algorithm 13,
which is fully automatic.

Because of the use of different types of CPUs and, in
some cases, GPUs during execution, it is not possible to
directly compare the execution time of the different algorithms.
However, we do observe a wide range of execution time, from
less than thirty seconds to more than one hour. Most execution
times are between two to f ve minutes per case.

Interestingly, no algorithm comes close to detecting the
entire reference airway tree, as observed from Figure 4. The
highest branches detected and tree length detected for each
case ranges from 64.6% to 94.3% and 62.6% to 90.4%,
respectively, with an average branches detected and tree length
detected of less than 77% and 74%, respectively. Fusing results
from the participating algorithms improves the overall result
substantially, reaching an average number of branches detected
of 84.3% and an average tree length detected of 78.8%, with
an average false positive rate of only 1.22%, when all f fteen

CASE21 CASE22∗ CASE23 CASE24

CASE25∗ CASE26 CASE27∗ CASE28

CASE29∗ CASE30 CASE31 CASE32

CASE33 CASE34 CASE35 CASE36

CASE37 CASE38∗ CASE39 CASE40

Fig. 12. Surface renderings of the reference. ∗ indicates that the case is from
the same subject as the preceding case. The branches are color coded from
red (detected by a single algorithm) to green (detected by all 15 algorithms).

algorithms were used.
Experiments on the inclusion of the results from different

algorithms using the SFS procedure show that the tree length
of the fused results converges quite rapidly, as displayed in
Figure 4 and Table IV(B). This indicates that reasonably
good results can be obtained by fusing only a subset of the
algorithms. In fact, Table IV(B) shows that with a smaller
number of algorithms (e.g. using up to 9 algorithms) in the
fusion procedure, one can obtain a lower false positive rate at
almost the same sensitivity.

The performance of the fusion scheme degraded slightly,
to a tree length detected of 74.3% and a false positive
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Fig. 13. Bar plot shows the percentage of branches detected vs. the number
of algorithms that detected them, averaged across all test cases. Figure shows
18.3% of the branches were detected by all 15 methods, while 13.7% of the
branches were only detected by one algorithm.

rate of 1.01%, when only fully automated algorithms were
included, with an approximate cumulative execution time of
184 minutes. Despite the drop in performance, the tree length
detected is still higher than that of any of the individual
algorithms. As expected, performance of the fusion scheme
using the sequence from SFS converges more rapidly than
simply ordering the algorithms based on their execution time.
Using the the sequence from SFS, the fusion scheme reaches
a tree length detected of more than 70%, or 71.3% to be
exact, with only six algorithms. Although the sequence ordered
according to execution time requires eight algorithms in the
fusion scheme to reach a tree length detected of 70.9%, it
does have lower cumulative computation time (approximately
23 minutes per case) as compared to the sequence from SFS
(approximately 109 minutes per case).

As the results from the fusion scheme are derived from the
same segmentations that were used to construct the reference
standard, performance of the combined algorithm may be
slightly lower on unseen data. However, the fact that the results
from the fusion scheme are better than those of individual
algorithms indicates that the different extraction algorithms
are complementary to each other and their combination can
be expected to improve results. Such a property is not unique
and has been noted in other comparative studies [44], [45].

Figure 9b shows that the algorithms have fairly high sen-
sitivity in detecting the segmental bronchi, ranging from 0.70
(LB1) to 0.99 (LB6), indicating that each of the segmental
bronchi is at least detected by 10 different algorithms on
average.

B. Reference standard

This work has presented a novel way to construct a reference
standard for a structure that is hard to segment manually,
in this case the airway tree, from multiple machine made
segmentations. The key concept is to break the machine made
segmentation into parts, which is a natural operation for airway
trees as they consist of branches, and have human experts
accept or reject the parts. Overall, this procedure, though
time-consuming, worked well and has resulted in a unique

resource, a reference standard that is available to the research
community for algorithm evaluation.

A limitation of our reference standard is that it, by the
nature of the way in which it was constructed, does not
contain all visible airway branches in the data set. Even though
one of the algorithms (Algorithm 15) employed extensive
user interaction of up to three hours per scan, there are
visible airways that have not been indicated by any of the
15 algorithms. We therefore conducted an additional study,
described in Section VI-B, from which we concluded that
about 10% more visible branches are presented in the data.
Although it has to be realized that this is an estimate only,
based on the opinion of a single human observer who has to
make subjective judgements about the visibility of very small
airways, we can conclude that the reported sensitivities from
the algorithms in this study have a positive bias. If in the
future new results were submitted and processed in a similar
manner, by having human observers assess the correctness of
new branches, it is possible that this percentage of missed
airways would decrease somewhat.

A point of concern on the credibility of the reference
standard would be the relatively low overall agreement be-
tween the scores from the observers and the f nal scores,
which averaged to 80.31% across observers. This low overall
agreement is mainly caused by the small branch segments,
for which it is often diff cult to discern whether they are
true airway branches or not. The observers in our study
have especially low agreement (of less than 85%) with the
f nal scores for branch segments smaller than 400 voxels, as
shown in Table III. Although the scores of these small branch
segments of less than 400 voxels constitute 81.35% of the
overall scores assigned by the observers, they only consist of
20.75% in terms of volume.

Another limitation of our approach is that we take the
union of “correct” voxels as the reference airway tree and
as a result the correct part of voxels in branches labeled as
“partly wrong” will be treated as wrong and be penalized
during the evaluation. However, as segmented airway trees
from different algorithms of the same scan are used, most
of the voxels that are previously marked as “partly wrong”
will eventually be assigned different labels, as they overlap
with either “correct” or “wrong” regions of branches from
other algorithms. Although there are still correct voxels within
“partly wrong” regions being discarded, the impact on the
evaluation results is minimal as it concerns only a small
fraction of the original 5.51% of “partly wrong” voxels.

C. Case analysis

The dataset used in this study is designed to evaluate
performance of airway extraction algorithms over a wide range
of different variations and anomalies. It is not a suitable dataset
for the study of effects of specif c factors, such as dose,
inspiration level, pathology etc., have on the performance of
airway extraction algorithms, due to the small number of cases
used and the fact that each case had multiple confounding
factors that may be inf uencing the results. Nevertheless, we
investigated the effects of the different factors based on the
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small amount of paired scans and groups of scans with similar
characteristics in our dataset.

To study the effect of the different doses, we separated
the scans into three groups based on their tube voltage and
tube current: a low dose group (cases 24, 26 and 38, with
a mean branches detected of 51.9% and mean false positive
rate of 1.30%), an intermediate dose group (cases 21-23, 25,
27, 30-33, 37, 39 and 40, with a mean branches detected of
51.5% and mean false positive rate of 3.54%) and a diagnostic
dose group (cases 28, 29, and 34-36, with a mean branches
detected of 52.6% and mean false positive rate of 1.96%).
Using unbalanced one-way Analysis of Variance (ANOVA),
no signif cant difference (p = 0.92) in branches detected
were found between the three groups. However, we did f nd
signif cant difference in false positive rate (p = 0.02) between
the groups, where signif cant difference were detected between
the intermediate and low dose group (p = 0.02), and between
intermediate and diagnostic dose group (p = 0.03), but not
between the low and diagnostic dose group (p = 0.37). For the
two pairs of low dose and intermediate dose scans (cases 24
and 25, and 26 and 27), branch counts were signif cantly lower
(p < 0.01 from paired Student’s t-tests) for the low dose scans
(mean branch count of 73.4 and mean leakage volume of 322.3
mm3) than the intermediate dose scans (mean branch count of
92.9 and mean leakage volume of 376.8 mm3), while there
was no signif cant difference in leakage volume (p = 0.54).

From the available paired inspiration and expiration scans
(cases 21 and 22, and 37 and 38), not only did the segmen-
tations of the inspiration scans have more correct branches,
they also had more leakage than their expiration counterparts.
Inspiration scans exhibited an average branch count of 145
branches and leakage volume of 942 mm3 compared to 76
branches and 115 mm3 for expiration scans. A paired Student’s
t-tests showed that these difference were signif cant (p < 0.01

for branch count and p = 0.02 for leakage volume). It should
be noted however, that scan 38 was acquired with a lower
dose and a different reconstruction kernel, which could have
affected the results as well.

The image pair case 28 and case 29 consists of scans from
the same subject reconstructed with a soft and a hard kernel,
respectively. Signif cantly more branches (p < 0.01) were
extracted from the scan constructed using the hard kernel, with
an average of 106 branches compared to 80 branches from the
soft kernel reconstructed scan. The average leakage volume for
the hard kernel scan was higher, 418 mm3 compared to 236
mm3, but the difference was not signif cant (p = 0.30).

The different noise levels from Table I, low (mean branches
detected of 51.2% and mean false positive rate of 2.65%),
middle (mean branches detected of 52.3% and mean false
positive rate of 2.32%) and high (mean branches detected
of 52.1% and mean false positive rate of 3.56%), did not
seem to have much effect on either the branches detected or
false positive rate, with a p-value 0.90 and 0.30 respectively
via unbalanced one-way ANOVA. For the scans that were
classif ed visually as middle (mean branches detected of 53.0%
and mean false positive rate of 2.43%) and hard (mean
branches detected of 51.5% and mean false positive rate of
3.80%) reconstruction (the soft reconstruction group was left

out as it only had a single case), although no difference was
found on the branches detected (p = 0.52), we did f nd a slight
difference in the false positive rates (p = 0.0549).

Additionally, we also performed unpaired Student’s t-tests
on group of scans without obvious abnormalities (cases 21, 22,
23, 28, 29, 35 and 37) and a group of scans showing bronchiec-
tasis (cases 33, 34, 36 and 39). Mean branches detected and
mean false positive rate were 53.8% and 2.75% for the healthy
group, and 48.1% and 2.63% for the bronchiectasis group.
We did not f nd a signif cant difference in branches detected
(p = 0.08) and false positive rate (p = 0.89) between both
groups.

D. Future of EXACT

All training and test data are publicly available at the
EXACT’09 website3. This website also provides detailed
descriptions for each algorithms, the performance metrics for
each scan and each algorithm, and surface renderings for
the results from each algorithm for all test cases. We also
provide the opportunity to have new results evaluated against
the current reference standard. The downside of this is that
some correctly segmented branches from newly submitted
algorithms may be classif ed as incorrect if they are missing
from the current reference standard. To solve this, we hope to
organize a future round of human observer evaluation where
the reference tree will be updated with additional branches
found by the newly submitted results and previously submitted
results will be re-evaluated.

VIII. CONCLUSION

A framework has been presented to establish a reference
airway tree segmentation. This was used to evaluate airway
extraction algorithms in a standardized manner. This is the
f rst study that performed quantitative evaluation of a large
number of different airway tree extraction algorithms (a total
of f fteen algorithms), which were applied to a single dataset
(twenty chest CT scans from various institutes) and evaluated
in a common, fair, and meaningful way. Three performance
measures were used to evaluate the sensitivity and specif city
of the different algorithms. Results showed that no algorithm
was capable of extracting more than an average of 74% (range
62.6% to 90.4%) of the total length of all branches in the
reference, with an average false positives of 2.81% (range
0.11% to 15.56%). It was shown that better results can be
obtained by a simple fusion scheme that retains regions that
are marked by two or more algorithms, resulting in extracting
on average 78.84% of the total length of all branches in the
reference, with an average false positive rate of only 1.22%.
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tion of airways from CT scans based on self-adapting region growing,” in
Proc. of Second International Workshop on Pulmonary Image Analysis,
2009, pp. 315–321.

[36] C. Bauer, H. Bischof, and R. Beichel, “Segmentation of airways based
on gradient vector f ow,” in Proc. of Second International Workshop on
Pulmonary Image Analysis, 2009, pp. 191–201.

[37] E. M. van Rikxoort, W. Baggerman, and B. van Ginneken, “Automatic
segmentation of the airway tree from thoracic CT scans using a multi-
threshold approach,” in Proc. of Second International Workshop on
Pulmonary Image Analysis, 2009, pp. 341–349.

[38] J. Tschirren, T. Yavarna, and J. Reinhardt, “Airway segmentation
framework for clinical environments,” in Proc. of Second International
Workshop on Pulmonary Image Analysis, 2009, pp. 227–238.

[39] P. Lo, B. van Ginneken, J. Reinhardt, and M. de Bruijne, “Extraction of
airways from CT (EXACT’09),” in Second International Workshop on
Pulmonary Image Analysis, 2009, pp. 175–189.

[40] T. Schlathölter, C. Lorenz, I. C. Carlsen, S. Renisch, and T. Deschamps,
“Simultaneous segmentation and tree reconstruction of the airways for
virtual bronchoscopy,” in Medical Imaging 2002: Image Processing,
M. Sonka and J. M. Fitzpatrick, Eds., vol. 4684, no. 1. SPIE, 2002,
pp. 103–113.

[41] J. N. Tsitsiklis, “Eff cient algorithms for globally optimal trajectories,”
IEEE Transactions on Automatic Control, vol. 40, no. 9, pp. 1528–1538,
1995.

[42] R. Malladi and J. Sethian, “Level set and fast marching methods in image
processing and computer vision,” in Proc. International Conference on
Image Processing, vol. 1, 1996, pp. 489–492 vol.1.

[43] C. Xu and J. L. Prince, “Snakes, shapes, and gradient vector f ow,” IEEE
Transaction on Image Processing, vol. 7, no. 3, pp. 359–369, Mar. 1998.

[44] T. Heimann, B. van Ginneken, M. A. Styner, Y. Arzhaeva, V. Aurich,
C. Bauer, A. Beck, C. Becker, R. Beichel, G. Bekes, F. Bello, G. Binnig,
H. Bischof, A. Bornik, P. M. M. Cashman, Y. Chi, A. Córdova, B. M.
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