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Abstract. Principal Component Analysis (PCA) has been widely used for di-
mensionality reduction in shape and appearance modeling. There have been sev-
eral attempts of making PCA robust against outliers. However, there are cases in
which a small subset of samples may appear as outliers and still correspond to
plausible data. The example of shapes corresponding to fractures when building
a vertebra shape model is addressed in this study. In this case, the modeling of
“outliers” is important, and it might be desirable not only not to disregard them,
but even to enhance their importance.

A variation on PCA that deals naturally with the importance of outliers is
presented in this paper. The technique is utilized for building a shape model of a
vertebra, aiming at segmenting the spine out of lateral X-ray images. The results
show that the algorithm can implement both an outlier-enhancing and a robust
PCA. The former improves the segmentation performance in fractured vertebrae,
while the latter does so in the unfractured ones.

1 Introduction

Principal Component Analysis (PCA) is a technique that simplifies data sets by reduc-
ing their dimensionality. It is an orthogonal linear transformation that spans a subspace
which approximates the data optimally in a least-squares sense (Jolliffe 1986). This is
accomplished by maximizing the variance of the transformed coordinates.

If the dimensionality of the data is to be reduced to N, an equivalent formulation
of PCA is to find the N-set of orthornormal vectors, grouped in the P matrix, which
minimizes the error made when reconstructing the original data points in the data set.
The error is measured in a Lo norm fashion:

N
C=>|PP'x; — x| (1)

i=1

where C' is the cost, N is the number of training cases and x; are the centered data
vectors to approximate.

Least-squares is not robust when outliers are present in the dataset, as they can skew
the result from the desired solution, leading to inflated error rates and distortions in sta-
tistical estimates (Hampel et al. 1986). Many authors, especially in the neural networks
literature, have tried to reduce the impact of outliers on PCA by modifying the cost in
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Equation[Il Xu and Yuille 1991, for example, introduced a binary variable that is zero
when a data sample is considered to be an outlier, one otherwise:

N
Cxu=Y_ [Vi|PP'x; — x| + n(1 - V)]

i=1

where V; is the set of binary variables. The term 7(1 — V;) prevents the optimization
from converging to the trivial solution V; = 0, Vi.

The main disadvantage of this method is that it either completely rejects or includes
a sample. Moreover, a single noisy component in a sample vector can make it be dis-
carded completely. Gabriel and Zamir 1979 proposed a similar method in which every
single component of each data point is controlled by a coefficient, instead of having one
binary weight per vector. Outliers are still considered, but have lower importance. Fur-
thermore, undesired components (known as intra-sample outliers) can be downweighted
without discarding the whole sample vector. Several other weighting and penalty terms
have more recently been proposed (see for example De la Torre and Black 2003), but
the formulation remains essentially the same.

All these approaches aim at reducing the effects of outliers in the model. In this paper,
a family of PC analyses, capable of both increasing and decreasing the contribution of
outliers in the model, is proposed. The algorithm was tested on a shape model applied
to the segmentation of the vertebrae from lateral x-ray images from the spine. In this
case, the fractured vertebrae may appear as outliers, but they are the most important
cases and should be enhanced rather than disregarded.

2 Methods

2.1 &-PCA and o-PCA

In contrast to directly minimizing the squared data reconstruction error as in normal
PCA (Equation[T)), the presented #-PCA algorithm minimizes:

N
C=> o[PP'x; — xi|?] 2)

i=1

where @ is a twice-differentiable function such that ®(z?) is convex. The fact that ¢
is twice-differentiable makes it possible to use Hessian-based methods in the optimiza-
tion, providing quadratic convergence. The convexity requirement ensures the existance
of just one minimum for C.

A simple and at the same time powerful form of the function is ¢(x) = z®, with
a > 0.5 in order to accomplish the convexity condition. This special case will be
called a-PCA. Large values for a (a > 1, in general) will enhance the outliers, as they
become more expensive compared to normal cases. In particular, « = oo would lead
to minimizing the L., norm, and hence the maximum reconstruction error over shapes
measured in a Lo norm fashion. On the other hand, smaller values (0.5 < o < 1) will
have the opposite effect, leading to a more robust PCA. The case & = 0.5 minimizes
the L; norm. Finally & = 1 amounts to standard PCA.
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The data points x; must be centered, which means that their mean must be subtracted
from them: z; = s; —pu, where s; represents the original, non-zero mean data samples. In
the proposed algorithm, the “mean” is no longer the component-wise arithmetic mean
of the data points as in the standard PCA, but the vector which minimizes (assuming M
dimensions for the data points):

N
Cun = 3 0lllu® — il Z@[Z —sm?] 3)
i=1

t=1

Once the x; vectors have been calculated the #-PCA, which consists of searching
the basis vectors P that minimize the cost function in Equation 2] can be performed.
Numerical methods will be required in both minimizing C' and C|,, as there is no closed-
form expression for % or P.

An important difference between standard and ¢-PCA is that, in the latter, the prin-
cipal components have to be recalculated if the desired dimensionality changes. In stan-
dard PCA, on the other hand, the first /N; principal components are common for two
analyses with N7 and N, components, assuming that Ny > Nj.

Optimization of the Mean: The expressions for the gradient and the Hessian of the
cost C e in Equation[3lare quite simple and fast to calculate. Using the component-wise
arithmetic mean as initialization, Newton’s method converges rapidly to the solution:

p =k — [HC,» (uf)] ' VC,yo (1),

where the gradient VC,» is a column vector consisting of the first-order derivatives:

_2243’ Z Sil)2] (% = sir),

=1 =1

aq@

and the Hessian matrix H consists of the second-order derivatives:

0°C s o - @ 2 @ 2 - @ 2
1 7 / §
Hyy = a’uég =2 § 20 E (Nl _Siz) (lu‘k _Sik) + @ (Nm - Sim)
k i=1 =1 m=1

2l (g = si )y — si,)

Hyy = Hyp = a/,(, - 4Z¢“ [Z Szl
w =1

Optimization of the Basis: Once the mean has been subtracted from the data points,
the cost C' in Equation[2l must be minimized. The function has the interesting property
that it reaches its global minimum for an orthonormal P matrix such that P'P = 1.
This makes it possible not to have to constrain P to accomplish this condition during
the optimization, even if that implies that in general PP will not represent a projection
matrix, and hence PP'x; — x; does not express the reconstruction error any longer.

In this minimization problem, only the expression for the gradient is implemented,
as the one for the Hessian matrix is too complex and its computation too expensive.
Using matrix calculus, all the partial derivatives can be calculated simultaneously:
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N
dC t o t t t _
P dp E o [||PP'x; — x;|°] = ;:1 @ (PP'x; — x;)'(PP'x; — x;)] = ...

N
> &' [xIPP'PP'x; — x|x; — 2x/PP'x;] [—4x;x[P + 2 [x;x[PP’ + PP'x;x!] P|
i=1
Once the gradient is known, different standard techniques can be used to update P.
In a simple gradient descent scheme, for example:

ac

P,.—=P, —k
+ dP

where k is the step size.

Line search can then be used with a normal PCA as initialization in order to quickly
find the optimal P. In this algorithm, different step sizes are probed at each iteration,
keeping the one that leads to the minimum value of the cost function C. It is important
to mention that the orthonormality condition, which would simplify the expressions of
the cost and the gradient, cannot be assumed throughout the process, as the P matrix is
being modified unconstrainedly (even though it converges to an orthonormal matrix).

2.2 Shape Models Based on ¢-PCA

In shape models (Cootes et al. 1995), a set of landmarks is defined on a set of previ-
ously aligned shapes. One data vector s; is built per shape by stacking of the x and y
coordinates of the landmarks. Next, the mean is subtracted from them and PCA per-
formed on the resulting x; data vectors, aiming at representing the shapes with a lower
dimensionality and with a higher specificity than the explicit cartesian coordinates, at
the expense of a certain approximation error. The differences between shape models
based on standard and #-PCA will be described.

First, the shapes are aligned with the Procrustes method (Goodall 1991) and their
mean calculated. Rotation, translation and scaling are allowed for aligning the shapes.
The alignment parameters and the mean are optimized simultaneously, minimizing:

N N N
Catign = Y _ Dl Ti(2i,6:) — u”|] = Y @llIsi = u? 1P} = Y BllIxil|*)
i=1 i=1 i=1

where T;(z;, 6;) represents the aligned s; shape according to the set of parameters 0;.
The constraint !y = 1 prevents the shapes from shrinking towards zero. The iterative
algorithm described in Cootes et al. 1995 was used for solving the problem:

Normalize the size of the first shape and use it as a first estimate of the mean.
Align all the shapes to the current estimate of the mean.

Update the estimate of the mean by finding the mean of the aligned shapes.
Normalize the size of the new estimate of the mean.

Go to step 2 until convergence.

Al
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The mean in the third step must be found by numerically minimizing the cost in
Equation 3] as already explained. However, as minimizing ®(t2) is equivalent to min-
imizing t> = ||[PP'x — x||?, the alignments in the second step can be easily calculated
by minimizing the sum of squared distances in the standard way (see Cootes et al. 1995
once more for a simple solution). Another consequence of this property is that the PCA
coordinates b; of a shape can still be calculated in the same way as in the normal PCA:

s; ~ u? + Pb; 4)
b; = Pi(s; — p?) 5)

3 Experiments

This study is based on a dataset which consists of lateral X-rays from the spine of 141
patients. Vertebrae L1 through L4 were outlined by three different expert radiologists,
providing the ground truth of the study. 65 landmarks were extracted for each verte-
bra using the MDL algorithm described in Thodberg 2003. The same radiologists also
provided information regarding the fracture type (wedge, biconcave, crush) and grade
(mild, medium, severe) for the vertebrae (see Genant et al. 1993). In addition, they also
annotaded the six landmarks used in the standard six-point morphometry (Black et al.
1995, Genant et al. 1993), located on the corners and in the middle point of both verte-
bra endplates. These points define the anterior, middle and posterior heights, which are
used to estimate the fracture grade and type.

Both normal PCA and a-PCA (for different values of «) were applied on the dataset
keeping 7 (a-)PCA coordinates, capable of preserving approximately 95% of the total
variance in the data in all the cases. For both algorithms the mean and maximum squared
reconstruction errors were calculated. The dependence of the error on the number of
fractures in the training set was also studied. It should be noted that a higher number
of components would achieve better precision and still provide a good trade-off with
respect to the specificity of the model, but a smaller amount was kept in this experiment
in order to better illustrate the difference between PCA and a-PCA.

Finally, PCA and a-PCA were tested in an active shape model (Cootes et al. 1995)
for segmenting the L.1-L4 vertebrae in the images. Two shape models were built, one
for the six landmarks and the other for the full contour, and the relationship between the
(a-)PCA coordinates of both models fitted to a conditional Gaussian distribution. In or-
der to allow for more flexibility in the model, a higher number of principal components
was utilized: seven for the six landmarks and eleven for the complete contour, keeping
approximately 98% of the total variance in both cases.

The mean of the conditional distribution was used as initialization for the segmen-
tation of the full contour. At each iteration, the gray level information along a profile
perpendicular to the contour was used to calculate a desired position for each point at
the following looping. The new contour can then be calculated by fitting the model to
the new points using Equations @ and 3] The conditional covariance was used to mea-
sure the Mahalanobis distance from the new (a-)PCA coordinates b to the conditional
mean. In case of it being larger than a certain threshold D, ., the vector is scaled down
b’ = b(Dyaz/D (b)) to ensure D(b) < D,y,q.. This way, the solution is constrained to
stay close to the six landmarks. The process is repeated until convergence.
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4 Results

4.1 Mean and Maximum Reconstruction Error

Figures [[la and [[Ib show the dependence on « of the sum of squared errors when
fitting the model to labelled points. The maximum error decreases with «, as expected,
doing it faster for the fractures. The mean error shows how values of a lower than one
tend to increase the error in fractures, as they are no longer important in the model,
and decrease it in unfractured vertebrae, even if it is not much. It should be noted that
unfractured vertebrae are in general quite well modelled already. Values larger than one
initially improve the results in fractures, at the expense of making them slightly worse
in unfractured vertebrae. Finally, if « increases too much, the model tends to fit merely
the most unlikely cases, making the average results worse both for unfractured vertebrae
and mild fractures.

4.2 Influence of the Number of Training Fractures

In this experiment, the model was built with all the unfractured vertebrae and different
fractions of the total amount of available fractures: from 12.5% to 100% in 12.5% incre-
ments. o was set equal to 1.75, providing a good trade-off between the maximum and
mean errors in fractured and unfractured vertebrae, according to the results presented
in above. Figure [[lc shows that a-PCA is especially useful, clearly outperforming the
normal PCA, when the number of fractures in the training set is relatively small.
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Fig. 1. a) Dependance of the mean sum of squared errors with «.. b) Dependence of the maximum
sum of squared errors with .. ¢) Dependence of the mean sum of squared errors with the number
of fractures present in the training set for v = 1.75.

4.3 Active Shape Model

Vertebrae L1 through L4 were segmented from the available images using a shape
model conditioned on the six landmarks annotated by the radiologists, using both stan-
dard and a-PCA (a = 1.75). The experiments were performed in a leave-one-out fash-
ion: the model used for segmenting a certain image is built upon all the other ones.
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Table 1. Mean point-to-line error (in mm) for the different analyses and doublesided p-values for
a t-test and a signed rank test with 95% confidence interval

No. shapes Error PCA (mm) Error a-PCA (mm) pt-test p signed rank

Unfractured 500 0.44 0.47 1.79-107*  6.05-10~*
Mild fractures 15 0.62 0.56 1.14-1072  1.25.1072
Medium fractures 38 0.66 0.57 7.87-107%  1.40-1072
Severe fractures 11 0.97 0.60 4781073 9.77-1073
All fractures 64 0.70 0.57 3.10-107" 3.53.107'2

The point-to-line errors from the true contour to the output of the algorithm are
displayed in Table [Il along with the p-values resulting from a paired, double-sided
t-test and a paired, double-sided Wilcoxon signed rank test. The results show that the
standard PCA leads to a lower mean error in unfractured vertebrae, but a-PCA provides
more uniform results along the different grades of fracture severity, at the expense of
a slight increase in the total mean error. Moreover, a-PCA significantly outperforms
the standard PCA in fractures, especially in the severe ones. It also has the property of
assigning different importance to each case in a continuous manner without requiring
fracture information for the training data. If this information was available, it would
be possible to build two different models, but then a large number of training fractures
would be required. Besides, if two models are fitted, a mistake in the decision about
which result to keep could lead to a very bad fit. Regarding the p-values, both tests
indicate that the difference in the means between the two setups is significant.

Finally, two radiographs which have been segmented with standard and a-PCA (o =
1.75) are displayed along with the contour provided by the radiologists in figure2l They
both correspond to severe fractures. a-PCA provides a better approximation of the real
shape, especially around the points in which it changes its direction rapidly.

Fig. 2. Segmentation examples. For each pair, the image on the left corresponds to the ground
truth and the image on the right to the shape model-based segmentation, both for standard PCA
(white) and a-PCA (black).

5 Discussion and Conclusion

A family of modified PC analyses has been presented in this paper. The family deals
with outliers in the data set in an optimal way according to a predefined function, whose
shape determines whether the importance of outliers increases or decreases compared
with normal PCA. The family &(z) = z® is proposed, but others could be used. Com-
pared to other methods in the literature, the one presented here has the ability of en-
hancing or disregarding outliers with just one compact and simple formulation.
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In most applications it is desirable to reduce the influence of abnormal cases on
the principal components. However, if PCA is utilized in a segmentation method, it is
essential to be able to adapt to such cases, whose correct processing might be even more
important than that of the normal ones. In this paper, a-PCA was tested in the creation of
a vertebra shape model, giving a higher importance to abnormal cases without requiring
prior knowledge on which of the shapes are fractured or present other abnormalities,
such as osteophytes. The segmentation accuracy was improved in such cases.

It should finally be noted that the conditional model used in the segmentation algo-
rithm assumes a Gaussian distribution for the PCA coordinates of the shapes. Using
«-PCA instead of standard PCA makes the distribution resemble less a Gaussian, in-
directly affecting the segmentation results. This fact may also affect further statistics
analysis if the PCA coordinates are for example used to estimate the fracture grade.
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