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Semiautomatic Segmentation of Vertebrae in
Lateral X-rays Using a Conditional Shape Model’

J. Eugenio Iglesias, MSc, Marleen de Bruijne, PhD

Rationale and Objectives. Manual annotation of the full contour of the vertebrae in lateral x-rays for subsequent mor-
phometry is time-consuming. The standard six-point morphometry is commonly used instead. It has been shown that the
information from the complete contour improves the quality of the study. In this article, the six landmarks are given and
the vertebrae are segmented taking advantage of that information. The result is a semiautomatic system in which the full
contour is found with high precision, and that only requires a radiologist to mark six points per vertebra.

Materials and Methods. A shape model was built for both the six landmarks and the full contours of the vertebrae L1,
L2, L3, and L4 of 142 patients. The distribution of the principal components of the full contour was then modeled as a
Gaussian conditional distribution depending on the principal components of the six landmarks. The conditional mean was
used as initialization for active shape model optimization, and the conditional variance was used to constrain the solution
to plausible shapes.

Results. The achieved point-to-line error was 0.48 mm, and 95% of the points were located within 1.36 mm of the anno-
tated contour. The accuracy is superior to those of previously published studies, at the expense of requiring the six points
to be marked. Fractures and osteophytes are well approximated by the model, although they are sometimes oversmoothed.

Conclusions. The proposed method provides hence a richer description than the six points, and can be used as input for
shape-based morphometry to detect and quantify vertebral deformation more accurately.
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Osteoporosis is a disease of bone in which the bone min-
eral density is reduced, bone microarchitecture is dis-
rupted, and the amount and variety of noncollagenous
proteins in bone is altered (1). Bones affected by the dis-
ease are more likely to fracture. Osteoporosis is defined
by the World Health Organization as either a bone min-
eral density 2.5 standard deviations below peak bone
mass (20-year-old, sex-matched healthy person average)
as measured by dual x-ray absorptiometry (DXA), or any
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fragility fracture. Because of its hormonal component,
more women, particularly after menopause, suffer from
this disease than men.

Osteoporotic fractures are those that occur under slight
amount of stress that would not normally lead to fractures
in nonosteoporotic people. Typical fractures occur in the
vertebral column, hip, and wrist. Vertebral fractures are
the most common ones. They occur in younger patients
and they are a good indicator for the risk of future spine
and hip fractures. These two are the most serious cases,
leading to limited mobility and possibly disability. Hip
fracture, in particular, usually requires major surgery,
which has important associated risks, such as deep vein
thrombosis and pulmonary embolism. Although osteopo-
rosis patients have an increased mortality rate because of
the complications of fractures, most patients die with the
disease rather than of it.
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Vertebral fractures are conventionally detected and
graded on lateral x-rays. Apart from the subjective judg-
ment of the image by a radiologist, the standard six-point
morphometry (2,3) is commonly used. In this technique,
six landmarks are placed on the corners and in the middle
point of both vertebra endplates, defining the anterior,
middle, and posterior heights. These measurements can be
used to calculate a fracture grade, as in previous work
(4,5). In current clinical trials, a fractured vertebra is de-
fined as the one for which one of the three heights is at
least 20% larger than any other.

The six-point representation captures most of the im-
portant information in the image, but it is unable to de-
scribe certain structures (such as osteophytes) or subtle
shape variations. In earlier work (6), a point distribution
model (PDM) was used to represent the full contour of
vertebrae, and a classifier to separate normal and frac-
tured vertebrae. An improvement was observed in the
performance of the full contour representation compared
to that of the six landmarks. Full-contour based mor-
phometry was also carried out in (9). Because annotating
the full contour of the vertebrae represents a huge load of
work, many methods have been proposed to segment
them automatically.

Automatic segmentation of the vertebrae in lateral x-
ray images is a difficult task because of the nature of
such images: they show the superimposition of many lay-
ers, making it difficult to distinguish the region of inter-
est. This region is just a sagittal plane along the spine.
This is the reason why many classic segmentation ap-
proaches, such as those based on region growing or
snakes, fail. Active shape models have the advantage that
they make use of prior knowledge on vertebral shape and
appearance and therefore do not need to rely completely
on the information in the images.

Many fully and semiautomated, shape-model based seg-
mentation attempts are described in the literature. In a fully
automated system, Zamora et al (7) used an active shape
model (ASM) including gray-level edge information, initial-
izing it with a customized implementation of the generalized
Hough transform. They applied the method on x-ray images
and achieved errors lower than 6.4 mm in 50% of the lum-
bar images. Smyth et al (6) used ASM methods in a semiau-
tomated system to segment vertebrae in DXA. Requiring the
user to mark three points corresponding to the midpoints of
the bottom of L4, top of T12, and top of T7, they achieved
a root mean square (RMS) point-to-line error lower than
1.23 mm in 95% of the cases in healthy vertebrae, and
lower than 2.24 mm in 92% of the fractures. De Bruijne et

al (8) proposed a fully automated method based on shape
particle filtering, lowering the average point-to-line error to
1.4 mm in radiographs.

Roberts et al (10) incorporated an active appearance
model and a dynamic ordering algorithm to segment the
vertebrae in DXA images. Requiring the user to annotate
the same three points as Smyth et al, they achieved a
point-to-line error of 0.79 mm. The best results in the
current literature have been achieved by the same authors
(11), who recently reported a 0.64-mm mean point-to-line
error (95% of the points 2 mm within the contour) in
healthy vertebrae on radiographs, and 1.06 mm (with 87%
within 2 mm) in fractures. This time they required the
clinician to mark the approximate center of each vertebra.
They improved also their algorithm in DXA images (12)
by using two different initializations, one assuming a se-
vere fracture and other assuming a normal vertebra, and
then picking the best solution. They required once more
the centers of the vertebrae to be marked, and achieved
0.69 mm mean point-to-line errors in normal vertebrae
and 0.96 mm in fractures.

The cited studies require little or no user intervention,
which is obviously an advantage. Their main shortcoming
is that, even if the ASM constraints ensure plausible re-
sulting shapes, the uncertainty in the pose parameters
makes it difficult to fit the model. In this article, it is pro-
posed to make use of the information from the six land-
marks (of the six-point morphometry, annotated by a radi-
ologist), leading to a semiautomatic algorithm. At the ex-
pense of requiring slightly larger user intervention, the
segmentation accuracy can be improved.

In this study, two PDMs were built from the manually
annotated training images: one for the six landmarks and
another for the full contour, which is represented by 67
points. It is then possible to study the relationship be-
tween them and build a conditional PDM for the full con-
tour depending on the six points. One can then work with
the conditional distribution, taking its mean for the initial
solution and using its covariance, which will be “smaller”
than that of the general model, to set the plausibility lim-
its for the ASM.

For example, if the general model was used, a shape
close to the mean but with the points corresponding to the
six landmarks far away from the annotations would have a
high likelihood. In the conditional model, moving the points
corresponding to the six landmarks away from the six anno-
tations will make the likelihood decrease very quickly. Us-
ing the information from the six landmarks helps improve
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the accuracy of the segmentation and makes the probability
of achieving a very bad result in a difficult case very small.

MATERIALS AND METHODS

Available Data

Full contours and sets of six landmarks from 142 patients
were available. In case of the vertebrae having “double con-
tours” from projection effects, the lower one was always cho-
sen. Vertebrae L1, L2, L3, and L4 were analyzed, so 568 verte-
brae (64 fractures) were included in the study. The images were
12-bit deep and their resolution was 570 dpi. They were stored
in DICOM format. Because the application did not require such
high resolution, they were downsampled by a factor of five
after applying an anti-aliasing Gaussian filter. In a digital image,
the maximum digital frequency that can be represented is equal
to 7r. Because this frequency is going to be divided by five
because of the downsampling, the discrete cutoff frequency of
the anti-aliasing filter, defined as twice the standard deviation of
the Gaussian, was made equal to w. = 77/5. This is equivalent
to a standard deviation of o = 3.24 pixels in the spatial do-
main.

The six landmarks and the contours were marked by
three different radiologists. The radiologist who marked the
landmarks on an image would always annotate the contour,
too. In the annotation of the six landmarks, the corners were
marked first. Then the perpendicular bisector of the segment
joining the upper corners was displayed. It serves as a guide
for the radiologist, who is supposed to place a landmark on
the point of minimum height, and if it is unclear, as close to
the bisector as possible. The process is then repeated for the
lower plate. The displayed bisectors help the radiologists be
consistent throughout the annotation process, minimizing the
impact of interobserver variability in the PDM.

To annotate the whole contour, the radiologists drew a
polygonal line with as many vertices as they wanted. This
contour was the ground truth for the study. The six land-
marks and the contours were annotated in different passes
without showing the earlier annotation, so they do not
necessarily overlap (Fig 1).

METHODS

The proposed method is based on the following steps:
1. Training:

a. An expert radiologist annotates the six land-
marks and the contours on the training images.
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Figure 1. Six initial landmarks (stars), contour with and selected
points (asterisks). Note that the six landmarks are not exactly on
the contour.

b. Align the vertebrae in the dataset.

c. A PDM is created for both the six landmarks
and the full contour.

2. Segmentation

a. A radiologist marks the six landmarks of the
actual image to be segmented.

b. The conditional model is built based on the
position of the six landmarks on the image to
analyze and on the two models derived from
the training set.

¢. An initial solution is estimated, using the
mean of the conditional model.

d. Active shape modeling is used in order to fit
the contour to the vertebra in the image, using
the conditional covariance to constrain the
solution.

Landmark Placement

Because a point distribution model is to be built, a set
of landmarks must be defined for each available complete
contour. As opposed to the six landmarks, the contours
consist of a variable number of points, so it is necessary
to resample them to ensure that the number of points is
the same for every case. Because the maximum number
of points annotated by a radiologist was 53, it was arbi-
trarily decided that the model would consist of 67 land-
marks. The points of the contour closest to the initial six
landmarks were chosen to be points 1, 13, 25, 43, 55, and
67. The rest of the landmarks were equidistantly placed
between these six. The third segment has 50% more land-
marks because it is on average (approximately) 50%
longer than the other four. A sample image is shown in
Fig 1. No resampling is required for the six points.
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Alignment

Translation, scale, and rotation deviations between
point sets must be eliminated through alignment. The Pro-
crustes method (13) was used, using only the information
from the four corners points from the six landmarks.
Translation, rotation, and scaling, represented by four pa-
rameters, were allowed. The transform parameters for
each vertebra were then applied on the corresponding full
contours, so that both representations were aligned on the
basis of the vertebral corners. Each aligned shape is then
represented by a vector of landmark coordinates:

Sl (1)

X =[x, X2, -y Xy Vis Yoy - -

where N = 6 or N = 67, depending on the model.

PDM

After the training shapes are aligned, a point distribu-
tion model (14) is built for both the six landmarks and
the full contour representations, mixing vertebrae L1, L2,
L3, and L4 into a single model. To build the model, a
principal component analysis was performed on the
aligned data vectors. Principal component analysis is a
technique, which can be used to reduce the dimensional-
ity of a dataset. It is a linear transformation toward a new
coordinate system such that the greatest variance by any
projection of the data lies on the first coordinate (known
as the first principal component), the second greatest vari-
ance on the second coordinate, and so on. It is therefore
possible to simplify the dataset by keeping only the first
few principal components in the new representation. The
principal components, which constitute an orthonormal
base, are defined by the eigenvectors of the covariance
matrix of the dataset.

The shape model is then characterized by a mean
shape x , the kept eigenvalues A, i =1, ..., k, and the
corresponding eigenvectors, which are grouped column-
wise in the P matrix, which accomplishes that PP = [.
Each shape can then be approximated by

x=~X+Pb (2)
where b can be calculated for a certain shape:
b=P'(x —X)

and the approximation error vector is:

e=x—X—Pb=x— i—P(P’(X — i))

where b is a column vector of k components, representing
the projection of the shape onto the space of the model.
Across the training set, the mean of this vector will be
zero, and the covariance C will be a diagonal matrix in-
cluding the k eigenvalues A,

To verify whether a certain vector b corresponds to a
plausible shape, it must be checked that it is not too far
away from the mean of the model, that is, the zero vec-
tor. At the same time, plausible shapes can be generated
just by taking b vectors close to the zero vector. The
valid region is defined by limiting the Mahalanobis dis-
tance of b. The limit d,,,, can for instance be chosen us-
ing the x? distribution.

k[ p?
d="\/bC'b= 2(—) 3)

If the condition d < d,,,, is not true, the b vector can be
modified:

b’ = b(d,./d) “4)

Because the number of fractures in the dataset is low
compared with the number of healthy ones, their influ-
ence on the model was increased by giving them a higher
weight when building it. Two different weights were
given to normal and fractured vertebrae when calculating
the mean and the variance of the shapes, so that their to-
tal contributions were equal. Because 504 healthy and 64
fractured vertebrae were available, the weights were

1 0.5
Wh = = —
2Ny 504
1 0.5
V\/f = = —
N, 64
Nheal Nfrac
X'= 2 wixi+ 2, wx;
i=1 Jj=1
’_ Nheal + mec

o/ o\t
= wi(X; — X)(X; — X))
Nheal+Nfrac_ LU=
Nirac
+ 2, wix; — X)(x; — X))
j=1
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Initialization (dotted line) and real solution (solid line).
The six landmarks are also marked.

Figure 2.

Conditional Model

The distribution of the principal components of the
full-contour model F' can be modeled as a conditional
Gaussian, dependent on the principal components of the
landmarks L. If ws, w;, 25 2, are the means and covari-
ances of the principal components for the two models
across the training data, and X, 2, represent their
cross-covariances, it is possible to write:

P(F|L) = N(beosr Ceond)
bcond = MF+ EFLE;L] (L - ’-LL)
Ceona = EFF _EFL EL_LI ELF

where b,,,, is the conditional mean and C,,,, the condi-
tional covariance matrix for the principal component co-
ordinates of the full contour given the principal compo-
nent coordinates L of the six points.

It is also possible to model the position of the points
and landmarks instead of using the principal components.
In this case, multicollinearity in the positions might make
3,;; noninvertible, and regularization can be required. This
approach would lead to a more continuous downweight-
ing of less important variation rather than using a cutoff
at a fixed number of modes, but has the disadvantage that
the sizes of the %;;, 3,5, and X5, matrices become larger.

The mean of the conditional model b,,,; can be used
as initialization (Fig 2), and the covariance will be very
useful when fitting the model to the images. The condi-
tional covariance C,,,, is in general much “smaller” than
the unconditional covariance C'. The differential entropy
of the distribution decreases almost 10 logarithmic units
from the unconditional to the conditional model (from
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—13.88 to —23.85). It is thus possible to look for the solu-
tion around the conditional mean, in a region limited by a
certain value of Mahalanobis distance defined according
to the new conditional covariance. The search space will
hence be reduced, making it easier to fit the model and
making shapes relatively far away from the six landmarks
unlikely.

In the training data, that is, the annotated images, the
six landmarks are not constrained to stay on their corre-
sponding points on the contour. The lack of this con-
straint allows the 11-D full contour conditional shape
model to represent exactly the same shapes as the non-
conditional one, although with higher Mahalanobis dis-
tances and therefore smaller likelihood. This is important
because it allows the conditional covariance matrix to
remain full-rank, and thus invertible.

ASM

ASM (14) is an iterative algorithm that tries to fit the
shape model to the contours of the vertebrae in the im-
age. The first step is to find the translation (z,, t,), Totation
(0) and scale (s) parameters that best fit the corners of the
six given landmarks to the corners of the mean of the
shape model. These parameters define the transform that
allows to switch between the positions of the points in the
image X (in “physical” coordinates), and their positions in
the shape model “normalized” coordinates x. These pose
parameters will be kept constant throughout the process.

Starting from an initial solution (the conditional mean
b.ona)» Which is calculated in the “normalized” coordinates
with the six landmarks, a translation along the normal to
the contour is proposed for every point in the model at
each iteration. To calculate the optimal displacement, a
gray value profile is built by sampling the gray levels in
the image along the normal to the contour across each
point. Instead of using these values directly, their normal-
ized derivatives are calculated for the profiles: the incre-
ments are scaled so that the sum of their absolute values
for each profile is one. The values are then scaled (for
each profile) so that the sum. This makes the algorithm
robust against contrast variations.

The resulting profiles are then compared to the ones of
the training cases on the contour at the same landmark. If
pi(t) represents the vector of normalized derivatives
around point ¢ in the profile around landmark i (let us say
in the interval [T — T, t + T,]), a fitness function fi(t)
(15) can be calculated for each ¢ by comparing p(?) with
the model built from the training examples (with semi-
length T)):
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fi() =(p(1) — I_)i)[SpTil(pi(t) - p)

where p; is the average of the profiles of length 27, + 1
around the points in the training cases, and §,,; is a diago-
nal matrix including the (independent) variances of each
element in the profile. The function fi(#) will just be de-
fined in the interval [T, 7,]. Therefore 7, defines how
far from the current point location the search for the con-
tour is performed. If 7, minimizes f(¢), the shift 0.66¢,, is
chosen to make the algorithm evolve in a smoother way.

If the displacements that minimize different fi(z) are
stored in a vector dX by stacking the x and y coordinates
in the same way as then shapes in Eq 1, it is possible to
represent the new desired shape as X + dX. This sug-
gested shape is then transformed into the normalized co-
ordinates, becoming x + dX. The shape model parameters
b are then updated to fit x + dX as well as possible:

(P'W,)dx = (P'W,P)db

where Wy is a diagonal matrix with weights that measure
the importance of each point in the fitting. The weights
depend on the magnitude of the displacement (15) and on
the goodness of the fit:

) 1 1
W= 1 13.. <
2+ |dXz| fi(tm)
’
wi
L S
=1 Wi

The idea behind the first term of the weight (2 + 1dX,1%)™"
is to prevent the shape model from fitting distant points
that might be wrong, as least-squares is not robust against
outliers. The second term (fi(z,,))~" gives higher priority to
fitting those points that are probably located on the right
contour.

Before updating the contour, it is important to check
that db leads to a plausible shape. It is now that the in-
formation in the covariance of the conditional model be-
comes useful. The main differences with Eq 3 and 4 are
that the Mahalanobis distance is measured from the con-
ditional mean b,,,, instead of the origin and that the con-
ditional covariance C,,,, is not diagonal, so

Ly (B
bC b= (—
=1\ A;

a. b.

Figure 3. Influence of maximum allowed Mahalanobis distance
on the result. In (a) the shape model is unable to fit the contour
to the osteophyte. In (b), the threshold has been increased by 1.5
and the contour approximates the osteophyte better. The shape
model tends to oversmooth the osteophytes.

does not hold any longer (even though it would be possi-
ble to diagonalize C.,,,; and then use this simplification).

{r1=b;+db

d ="/, = b, ) C.ru(bl, = byy)
and then

’ .
i+1 > ldedmax

e {b + (011 = Do) Ao/ ), i d >
Therefore d,,, is the parameter that controls how free the
algorithm is to fit the contour to the edges in the image.
A large value allows the result to move around the princi-
pal component space, which can lead to implausible solu-
tions if the edges are not clear in the image. A small
value makes the algorithm rely mostly on the model,
leading to more conservative solutions, closer to the mean
of the distribution. This can prevent the algorithm from
finding the correct solution, especially in abnormal cases
with fractures or osteophytes, in which the real contour is
relatively far from the initialization in the principal com-
ponent space (Fig 3).

The new coordinates are easily calculated using Eq 2
and then transformed back to the physical coordinates by
the transform defined by —z,, —f,, —0, s~I. A new trans-
lation is then proposed for each point once more, starting
a new iteration. When the difference between the shapes
at two consecutive iterations is smaller than a certain
limit (||dX]|| = 1 pixel), the process stops.
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RESULTS

Parameter Setting

First of all, several preliminary experiments were run
to find suitable values for the different parameters in the
algorithm. Regarding the selection of the number of prin-
cipal components to be kept, it depends on the proportion
of the variance to be preserved. Seven and eleven compo-
nents, for the six landmarks and the full contour, respec-
tively, were enough to keep approximately 97% of the
total variance. From that point on, raising that proportion
becomes very expensive in terms of the number of princi-
pal components.

Regarding the profile lengths, it was found that using a
gray value model for the profile with semilength 7, = 12
pixels (2.7 mm) and making 7, = 8 pixels (1.8 mm)
leads to good results. 7, represents how far from the cur-
rent solution one tries to find the contour. Making this
parameter too large would make the search region too
large and hence make it more likely that the algorithm
captures a wrong edge, especially if this edge does not
represent an implausible shape. This happens typically in
“double contour” cases (Fig 5b).

Finally, the choice of the maximum Mahalanobis dis-
tance d,,,, was made with the help of the x? distribution
for eleven degrees of freedom. Arbitrarily fixing a 10%
tail probability, a compromise limit equal to 4.1 was
picked. All these parameters were kept fixed for all fur-
ther experiments, unless mentioned otherwise.

Evaluation

A leave-one-out experiment was carried out. For each
vertebra, a complete model (six landmarks, full contour,
profiles) was built from the other images and used for the
segmentation. The distance between each point in the
physician-annotated contour and the closest point in the
detected contour (point-to-line distance) was calculated
for each vertebra. The distribution of the error is repre-
sented in Fig 4.

The RMS error was equal to 0.68 mm, whereas the
mean error was 0.48 mm and its standard deviation was
0.48 mm. A total of 89% of the points was located within
1 mm of the manually annotated contour, 96% within 1.5
mm, and 98% within 2 mm. The average of the maxi-
mum errors in each vertebra was 1.53 mm.

That fractures were given a higher weight when build-
ing the model makes that the performance does not de-
crease much when segmenting fractured vertebrae. The
mean error for the fractures was 0.54 mm. 86% of the
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Figure 5. Some samples from the leave-one-out experiments.
For each pair, the image on the left represents the ground truth,
while the one on the right represents the output of the algorithm.
(a) Oversmoothing in fractured vertebra (0.85 mm mean point-to-
line error), (b) wrong edge captured (0.83 mm), (c) well-seg-
mented fracture (0.51 mm), and (d) typical, normal, well-seg-
mented vertebra (0.33 mm).

Histogram of the error Cumulative distribution function of the error
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Figure 4. Distance to real contour: histogram and cumulative
distribution function.

points where 1 mm within the real contour in fractures
and 94% within 1.5 mm.

It is also interesting to judge the results visually, espe-
cially in cases with osteophytes and fractures, in which
the contour may be oversmoothed. Some sample images
are shown in Fig 5. The model has difficulties to approxi-
mate the ground truth when the latter takes abrupt turns
(like around osteophytes), but otherwise works quite well,
as the quantitative results suggest.

It is also important to mention that the results are not
very sensitive to changes in the different tuned parame-
ters. The increments in the mean error when changing the
main parameters are:

1. for the profile length used for building the model: 4
um in a 4-pixel-wide region around the chosen
value.

2. for the profile length used in the contour search: 6 wm
in a 4-pixel-wide region around the chosen value.
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Table 1

Comparison of the Results from This Study and From the Literature

Authors Modality Error Measure Results
Zamora et al X-rays Point-to-point average =6.4 mm (50% of cases)
Smyth et al DXA Point-to-line RMS =1.23 in 95% of healthy
=2.24 mm in 92% of fractures
de Bruijne et al X-rays Point-to-line average 1.4 mm (healthy and fractures)
Roberts et al DXA Point-to-line average 0.70 mm in healthy,
1.23 mm in fractures
Roberts et al X-rays Point-to-line average 0.64 mm in healthy,
1.06 mm in fractures
Roberts et al DXA Point-to-line average 0.69 mm in healthy,
0.96 mm in fractures
This study X-rays Point-to-line average 0.47 mm in healthy,

0.54 mm in fractures

3. for the cutoff Mahalanobis distance, 25 wm in a
1-unit-wide region around the chosen value.

These values suggest that the method is robust against
non-optimal choices of the parameters. The cutoff Mahal-
anobis distance is the parameter that affects the results the
most, representing a tradeoff between freedom (better
approximation to outliers) and safety (lower likelihood of
implausible shapes). The profile lengths affect mostly the
convergence speed.

In the current setup, higher weights were given to frac-
tures when building the model, thus lowering the overall
mean performance but increasing the accuracy in the most
difficult and important cases. The weighting lowers the
largest errors, too. In spite of that, an average point-to-
line error lower than 0.5 mm was achieved. A total of
95% of the errors was lower than 1.36 mm. The perfor-
mance is higher than those of the most recent systems in
literature (Roberts et al [11] recently achieved a mean
error in normal and fractured vertebrae equal to 0.64 mm
and 1.06 mm, respectively, with 95% and 87% of the
points 2 mm within the contour), but requires an expert to
mark six points. Moreover, the error is below the in-
trauser variability limits for the six points described previ-
ously (6), which are slightly over I mm RMS (0.68 mm
RMS for the method presented in this article). Even if
this is not a fair comparison, as the variability in the full
contour would be expected to be lower, it gives and idea
of the achieved accuracy.

If the results in fractures are analyzed separately, the
performance of our method does not decrease as much as
those of the other systems in literature. Roberts et al (11)
achieve a mean error in fractures equal to 1.06 mm, with
87% of the points 2 mm within the real contour. The
mean error of our method in fractures is 0.54 mm, with
97% of the points within 2 mm. All the mentioned results
are summarized in Table 1.

That the six points and the full contour were annotated
in different passes implies that the solution is not con-
strained to pass through the six landmarks. This adds
flexibility to the shape model, making it possible for it to
fit a wider range of different shapes. That different radiol-
ogists made the annotations also adds some interesting
variability to the model; if the segmentation of the verte-
brae with this input data is successful, the resulting algo-
rithm will be quite robust.

Even though the algorithm works well in general,
osteophytes are usually detected but may be over-
smoothed (Fig 3, Fig 5a). This can be clearly appreci-
ated in Fig 6, where the mean position error is plotted
against the landmark number. The curve, on which the
points corresponding to the six landmarks have been
highlighted, peaks clearly just after the third landmark
and just before the fourth, which are the typical loca-
tions of osteophytes. The curve has local minima
around the points corresponding to the landmarks, ex-
cept for the middle point of the lower endplate. This is
possible because the six landmarks are not constrained
to be on the contour. The mean distances from these
points to the contour are marked with crosses in the
same figure.
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Figure 6. Error depending on the point number. The points cor-
responding to the six landmarks are marked with a star. The dis-

tance from the manually placed landmarks to the true contour are
marked with crosses.

The easiest way of improving the segmentation around
the osteophytes would be to place additional control
points on their tips (as it is done in the NHANES II data-
base of the National Institutes of Health) (16). This just
represents two more points to be annotated manually for
each vertebra. The only difference would be that the di-
mensionality of the shape vectors for the landmarks
would be increased by four: two points times two coordi-
nates. This approach was not investigated because these
landmarks were not available in our database. However,
using six landmarks that are part of a standard procedure
(2,3) has the advantage that the method can be immedi-
ately applied to many existing datasets that have already
been annotated for fracture assessment.

Another possible way to improve the segmentation
around the osteophytes would be to collect more training
cases in which they are present. It would also be possible
to give a higher weight to such cases, which worked well
with the fractures, but it would require an osteophyte-
labeled training set (unfortunately unavailable). A third
option could be to allow more flexibility to the ASM
around the typical locations for osteophytes, for example
by modifying the contour with a smooth curve to fit the
points. A more complex solution could be to improve the
correspondence of the landmarks around the osteophytes.
Minimum description length, in which the best hypothesis
for a given set of data is the one that leads to a largest
compression, can be used for choosing corresponding
points (17,18).

The possibility of having separate models for fractures
and healthy vertebrae was also considered, but prelimi-
nary experiments showed that, even if it was known
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whether the vertebra is fractured, the results improved
only slightly. This does not make up for the expense of
having to decide whether a vertebra is fractured or not,
because a mistake would lead to using the wrong model
and therefore to large errors. In a similar way, prelimi-
nary experiments suggested that it was better to mix all
the L1 to L4 vertebrae in a single model; the benefit of
having more training cases makes up for having a cus-
tomized model for each vertebra, because they are very
similar in shape.

Increasing the weight of the fractured vertebrae or os-
teophytes during the training so that they contribute more
to the model is a heuristic solution that improves the re-
sults for these cases, but it is not optimal in any sense. It
would be desirable to derive values of the weights that
would lead to an “optimal” result, for example minimiz-
ing a cost function that considers the importance of frac-
tures over normal vertebrae.

A semiautomatic vertebra segmentation method based
on a conditional shape model is presented in this article.
Estimation of osteoporosis has been the motivation of this
work, but the method can be used to quantify other pa-
thologies, for instance disk space narrowing or scoliosis.

The method is based on a model which is built based
on the position of six landmarks that a radiologist places
on the image, in connection with a set of manually anno-
tated example images. The method provides the full ver-
tebral contour and can therefore measure more subtle
shape variations. This is especially important in clinical
trials, in which the algorithm could potentially reduce the
required number of participants and follow-up time. It
addition, the information from the whole shape may lead
to earlier diagnosis and thus improved care for individual
patients.

Compared with other segmentation tools described in
the recent literature, our method outperforms them with
the only requirement of an expert marking six points on
each vertebra. The improvement is much larger when it
comes to fractures, which are the most important cases,
thanks to the good initialization and the constraints from
the conditional model.
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