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Localization and Segmentation of Aortic Endografts
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Abstract—A method for localization and segmentation of bi-
furcated aortic endografts in computed tomographic angiography
(CTA) images is presented. The graft position is determined by
detecting radiopaque markers sewn on the outside of the graft.
The user indicates the first and the last marker, whereupon the
remaining markers are automatically detected. This is achieved by
first detecting marker-like structures through second-order scaled
derivative analysis, which is combined with prior knowledge of
graft shape and marker configuration. The identified marker
centers approximate the graft sides and, derived from these, the
central axis. The graft boundary is determined by maximizing
the local gradient in the radial direction along a deformable
contour passing through both sides. Three segmentation methods
were tested. The first performs graft contour detection in the
initial CT-slices, the second in slices that were reformatted to be
orthogonal to the approximated graft axis, and the third uses
the segmentation from the second method to find a more reliable
approximation of the axis and subsequently performs contour
detection. The methods have been applied to ten CTA images
and the results were compared to manual marker indication by
one observer and region growing aided segmentation by three
observers. Out of a total of 266 markers, 262 were detected.
Adequate approximations of the graft sides were obtained in
all cases. The best segmentation results were obtained using a
second iteration orthogonal to the axis determined from the first
segmentation, yielding an average relative volume of overlap with
the expert segmentations of 92%, while the interexpert repro-
ducibility is 95%. The averaged difference in volume measured
by the automated method and by the experts equals the difference
among the experts: 3.5%.

Index Terms—Blood vessels, boundary detection, CTA, image
segmentation.

I. INTRODUCTION

A N abdominal aortic aneurysm (AAA) is an enlargement of
the infrarenal abdominal aorta, resulting from weakened

arterial walls. Once present, AAAs continue to enlarge and, if
left untreated, become increasingly susceptible to rupture, usu-
ally resulting in death. In conventional AAA treatment, the dis-
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eased part of the vessel is replaced by a synthetic graft during
open surgery. This invasive procedure has serious drawbacks,
including high mortality and complication rates and long hos-
pital stays.

Endovascular aneurysm repair (EAR) is the minimally inva-
sive alternative to AAA treatment [1]. Under fluoroscopic guid-
ance, an endograft is navigated through a small groin incision
into the aorta, whereupon an attachment system consisting of a
series of metal hooks is pressed into the vessel wall by means
of balloon inflations. Despite initial success of the endovascular
procedure, complications can arise in due course. The process of
aneurysm shrinkage, ongoing aneurysmal disease, and damage
or fatigue of graft material may result in leakage, graft migra-
tion, and kinking or buckling of the graft, which can subse-
quently cause rupture or occlusion. Frequent and careful patient
follow-up is therefore required [2]–[4].

In our study, computed tomographic angiography (CTA)
scans are made of each patient that has received an endograft,
within three days after surgery. Follow-up scans are made every
1.5 to 12 months, depending on the state of the aneurysm.
The standard follow-up procedure includes definition of the
central lumen line, thus enabling accurate graft and aneurysm
diameter measurements, and graft lumen segmentation for
volume measurements [5]. A volume representation of the
graft enables clear visualization of graft morphology, thus
revealing, e.g., graft kinking or lengthening. Current practice
in graft segmentation is thresholded three-dimensional (3-D)
volume growing under expert supervision, in which the expert
places seed points in the aorta and iliac arteries. All image
slices must be inspected; additional seed points can be placed
in falsely excluded areas, and spurious regions, often caused
by calcifications or radiopaque markers, must be separated
from the lumen manually. This procedure takes an experienced
operator approximately 10 min.

Automated vessel segmentation methods often start with the
definition of a central axis. A popular approach relies on mul-
tiscale image structure analysis, providing the likeliness that a
voxel belongs to the axis of a tubular object together with the
tube axis and an estimate of its width [6]–[11]. This can be used
as a vessel enhancement filter for visualization purposes or serve
as the basis for cost-minimizing central axis extraction [9], [12],
[13] or region-based segmentation. These methods are able to
cope with varying vessel width, but yield unreliable results in
case the underlying assumption of tubular shape does not hold,
for example, at bifurcations, in extremely tortuous vessels, or
in the presence of image artifacts. Lorigoet al. [14] proposed
a vessel segmentation scheme using a one-dimensional curve
evolving in 3-D space, which is especially good at capturing
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small vessels. Winket al. [15] described an automated central
vessel axis extraction plus vessel border estimation based on ray
propagation. For the boundary extraction, a similar, more robust
approach based on mean shift analysis is described by Teket al.
[16]. Given an approximation of the vessel axis, Verdoncket al.
[17] established the lumen boundary through dynamic program-
ming in reformatted slices perpendicular to that axis.

To our knowledge, no previous research has concentrated
on automated segmentation of aortic endografts. The problem
is similar to the segmentation of preoperative AAA [15],
[18]–[21], with graft metal induced bright streak artifacts and
shadows as an additional complexity. Juhanet al.[19] proposed
a geometric modeling scheme that allows for extraction of the
bifurcation and iliac arteries in preoperative AAA data. This
approach requires preprocessing in the form of supervised
contour definition in each slice. Automated methods based on
volume growing [18] and 3-D deformable modeling [20] have
been applied successfully to segmentation of the aorta and its
branching vessels, but were not able to adequately segment
the aortic bifurcation and the tortuous iliac arteries. Subasicet
al. [21] and Mageeet al. [22] reported promising results on
preoperative data using 3-D level-sets, but did not yet present
an extensive evaluation.

In general, methods relying on image intensity without in-
corporating explicit shape knowledge would, in the presence
of graft metal, encounter similar problems as the expert guided
segmentation that is currently clinically used. In this paper, a
scheme for localization and segmentation of endografts, based
on automated detection of radiopaque markers, is presented.
The central axis and approximate boundary location can be de-
duced from the markers, whereupon accurate graft delineation is
achieved through contour cost minimization using dynamic pro-
gramming, similar to [17]. The advantage of the explicit marker
detection is that, once the marker locations are known, their ar-
tifacts can be accounted for during the segmentation procedure.
This work is an extension and evaluation of [23].

This paper is organized as follows. In Section II, the methods
for marker detection, graft localization, and graft segmentation
are discussed. The results of the methods as applied to ten CTA
scans are presented and compared to manual marker indication
and lumen segmentation by three experts in Section III. Sec-
tion IV provides conclusions and a discussion.

II. M ETHODS

The graft segmentation procedure is preceded by a local-
ization step, which is based on the automated detection of
radiopaque markers that are sewn on the graft. Section II-A
explains the graft geometry, marker configuration, and position
in the image. Section II-B presents a method for the detection
of markers and marker-like structures. The correct marker
configuration and graft position are derived as in Section II-C.
Section II-D describes the final graft segmentation process.

A. Description of the Graft

The type of endograft that is used in our study is the Ancure
Endograft bifurcated graft, as shown in Fig. 1. Worldwide, more
than 5000 of these grafts are placed each year. The markers on
this graft are hollow platinum cylinders with a radius of 1 mm

Fig. 1. Ancure Endograft bifurcated graft with the markers enhanced. Markers
are sewn at regular intervals along the length of the graft, 180apart. Two
additional markers are placed in the bifurcation.

and a length ranging from 1.5 to 5 mm. In CT images, they ap-
pear as bright, slightly elongated structures. Markers are sewn
at both sides along the length of the graft, at intervals of ap-
proximately 10 mm. Two additional markers are placed at the
bifurcation. The number of markers varies with the graft length.
Available graft lengths are 12 to 19 cm, with 1-cm increments.
The diameter varies from 20 to 26 mm.

With respect to the graft cross-sectional shape in an image
slice, we can distinguish three stages. While the contour of the
graft starts out as a circular or oval shape near the proximal
attachment, it gradually becomes more “8-shaped” when ap-
proaching the bifurcation. Beyond the bifurcation, two separate
limbs are visible.

Following graft placement, the shape of the graft and its
surrounding tissue can change considerably. The aneurysm sac
generally shrinks when the pressure is released, as a conse-
quence of which for instance calcifications that are distant from
the lumen wall in the postoperative scans may be near the graft
in a follow-up scan. In many patients, kinking or buckling of
the graft has been observed [3].

B. Marker Detection

The markers are enhanced by means of a second-order deriva-
tive filter based on the eigenvalues of the Hessian matrix[24]
at a given voxel . describes the local second-order struc-
ture in the original gray-valued image

(1)

where subscripts denote derivatives to the corresponding spa-
tial variables. Derivatives are computed by convolution with the
derivative of a Gaussian kernel of width

(2)

We denote the eigenvalues of by , , and , such that
.
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(a) (b) (c) (d)

Fig. 2. Distances between successive markers and angles between line segments connecting successive markers, as measured in the (a) graft body, (b) bifurcation,
and (c) limbs. (d) Distance from the proximal markers to the bifurcation markers, and the angle with thez axis. The lines denote search space boundaries.

Since the markers appear as bright cylinders, the local
second-order structure at a marker voxel will reveal a strong
negative second-order derivative in the directions perpendicular
to the marker axis, and a weaker negative derivative along the
axis. In terms of eigenvalues, this means .
At small scales, increases along the axis toward the marker
endpoints, whereas at sufficiently large scales, the output of
both endpoints coincides at the center. Thus, at appropriate
scales, the marker center is associated with a local minimum in
the product of the eigenvalues of the Hessian matrix.

A feature image containing the product of the eigenvalues of
at each voxel is computed. In this image, local minima that

are formed by three negative eigenvalues correspond to the cen-
ters of bright blob-like structures in the original image and are
potential marker centers. Local minima are detected by com-
paring the gray values in a 26-neighborhood for each voxel. A
voxel is a local minimum if all of its 26 neighbors have higher
gray values. If at least one of the neighbors has equal gray
value and none is lower, the cluster of connected voxels with
equal gray value forms a local minimum from which we se-
lect the center of gravity as the absolute local minimum. Local
minima with low intensity in the original image
are excluded. All remaining local minima are stored as poten-
tial marker centers, the product of eigenvalues representing their
marker likeness.

C. Marker Selection

The set of potential marker coordinates resulting from the
marker detection contains not only all markers, but also a small
number of false positives. Additional information is needed to
discern the true markers from other marker-resembling struc-
tures and to determine the proper ordering of markers along the
graft. We propose an iterative tracking scheme, in which suc-
cessive markers are searched at first in a small region. If no suc-
cessor is found, the search region is enlarged and the process
repeated.

1) Prior Knowledge: The search spaces are derived from
ten CTA scans in which the markers are indicated manually.
The distances between successive markers, the distance from
the most proximal markers to the bifurcation markers, and the
angles between the line segments connecting the markers were
measured. These characteristics are different for the proximal
and the distal part of the graft. The distances and angles mea-
sured are shown in Fig. 2. The distance between the bifurcation
markers was 5.90.9 mm.

The size of the initial search space is set such that the average
distance or angle plus one standard deviation is included, unless

the chance of having two markers in that region would be large,
in which case the first distance bound is kept smaller. The other
search spaces comprise roughly 80%, 90%, and 100% of the
markers. In this way, the chance of skipping one marker in the
first search space is minimized, while outliers can be captured
in the largest search space.

2) Tracking Algorithm: The graft localization algorithm
consists of the following steps.

Initialization: The operator initializes the process by indi-
cating the markers at the proximal and distal ends of the graft
on both sides. The marker candidates that are nearest to the in-
dicated points are selected as the end markers, thus limiting user
dependency.

Bifurcation detection:Subsequently, the bifurcation
markers are searched. All pairs , of marker candidates in
the bifurcation search space are evaluated. Bifurcation markers
are close to each other, lie in the plane perpendicular to the
graft axis, and are of the same size and orientation wherefore
their marker likeness will be similar. The bifurcation pair must
satisfy the following requirements:

mm mm

angle z-axis

and
Min
Max

where is the output of the Hessian filter. If more than one
of these pairs exist, the pair nearest to the proximal markers is
selected as the bifurcation pair.

Marker tracking: The tracking starts in vertical direction,
downwards from the proximal end markers and upwards from
the distal end markers, using the smallest search spaces. The
strongest marker candidate in the search space is selected as the
successor. The tracking continues from this marker along the
direction from the previous marker to the current one.

Search space adaptation:If no suitable marker candidate
was present, the process is repeated in a larger search space.
The process stops if no successor was found even in the largest
search space. When a new search space contains the bifurcation
markers, it is adapted to bridge the gap between proximal and
distal graft markers. Beyond the bifurcation, the search space is
again adapted to account for the different properties of this part
of the graft.

The algorithm terminates if no successors are found or the
two lines on one side of the graft connect, i.e., when the end of
the opposite line is encountered in the search space.
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Fig. 3. Example CTA slices showing the boundaries of the polar image (black) and the contours detected (white) for, from left to right: the proximal part of the
graft, just above the bifurcation, and the graft limbs. All CTA images in this paper have been contrast stretched for better visibility of the lumen.

D. Graft Segmentation

The marker locations confine the graft lumen and, hence, ap-
proximate the central lumen axis. In sequential image slices, the
graft boundary is searched in a circular region comprising the
approximate border location. Three approaches were tested.

1) The graft contour is detected in the original CT-slices
(Section II-D1).

2) The graft contour is detected in reformatted slices orthog-
onal to the approximated central axis (Section II-D2).

3) As in (2), whereupon the central axis is determined from
the contours obtained and a second iteration detects the
boundary orthogonal to this axis (Section II-D-3).

1) Slice-Based Approach:Cubic B-spline interpolation be-
tween the markers defines two graft side points in each slice.
The spatial average of those side points approximates the vessel
center.

Polar images are constructed in each slice, showing the gray
values along lines departing from the center point. The images
are bounded by a minimum radiusand a maximum radius ,
defined as

(3)

(4)

where denotes the obtained distance from the center to the
graft side, and and are tunable parameters that allow for
deviations from circular shape as well as some inaccuracy in
the side point detection. Owing to the precise prediction of
boundary location, the parameters and can be chosen
small.

In the thus-constructed polar image, the edges in the tan-
gential direction () are enhanced through convolution with the
two-dimensional-scaled Gaussian derivative in radial direction
( )

(5)

As the lumen is bright on a darker background, the lumen wall
corresponds with a local minimum in the radial gradient. The
optimal path through both established side points minimizing
the radial gradient is obtained through dynamic programming;

For a closed path, the minimum cost of all possible paths in the
polar image is given by

in which , the cost of a path starting at, is obtained
using

(6)

The optimal path is determined by back tracking from the op-
timal endpoint.

Near the bifurcation the cross-sectional shape changes, and
we can no longer assume that the graft boundary has minimal
gradient in the radial direction at each point. At a distance
proximal to the bifurcation markers, we therefore start searching
for two smaller intersecting circles instead of one. The centers
of these circles are interpolated between the center atand
the approximated limb centers in the bifurcation. The confining
radii and are again given by (3) and (4), whereis the
distance to the graft side.

Beyond the bifurcation, for each limb only one side can be
deduced from the markers, and the lumen center is estimated
from the side point and the adjacent contour. Ifand are the
side point and the obtained center in the previous slice, and
is the side point in the next slice, then the approximate center
in the next slice is given by

(7)

Since no accurate diameter is known beforehand, the polar
image is bounded by fixed and . Fig. 3 shows an
example of the confined search region and the detected contour
for each part of the graft.

A voxel representation of the graft lumen is constructed by
flood filling the obtained contours.

2) Orthogonal to the Graft Axis and Sides:The central
vessel axis is established as in Section II-D1. It is then re-
sampled such that there is a sample point in each voxel the
axis passes through. For each sample point, a polar image is
constructed in the plane through the point and perpendicular to
the axis. The images are bounded, and the contours searched,
in the same way as in the slice-based approach. Beyond the
bifurcation, the centers are estimated by

(8)
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(a) (b)

Fig. 4. (a) ROC curve of markers detected in ten images at scales ranging from 1 to 8 mm. The total number of markers present in the images is 266, the maximum
number detected is 262. (b) Histogram of gray values in the original image at marker candidate positions, for the false positives (gray) and true positives (black).

where is the rotation matrix that maps the tangent atonto
the tangent at . The polar images are constructed around the
estimated center point but perpendicular to the graft side.

The result is an ordered set of nonparallel contours. Construc-
tion of a voxel representation is less straightforward than in the
slice-based approach. Angular resampling, starting at the same
marker line for each contour, results in contours with an equal
number of points and known point correspondence. The graft
surface is then approximated by a triangulation between succes-
sive contours. A slice can contain several intersecting contours,
of which the outer envelope defines the graft wall.

3) Second Iteration Orthogonal to the Graft Axis:The
central points of obtained contours define the central axis
for the limbs, where previously only one side was known. A
smooth central axis is obtained through cubic B-spline approx-
imation, and the contour boundary detection as described in
Section II-D1 is performed orthogonal to this curve.

E. Evaluation

The segmentations obtained are evaluated by means of visual
inspection, computed overlap with expert segmentations, and
agreement of measured volume with expert measurements.

The relative volume of overlap of two volumes and is
defined by

(9)

The averaged relative difference in measured volumesfor
with respect to is defined as

(10)

III. EXPERIMENTS AND RESULTS

The three stages of graft segmentation as described in Sec-
tion II, namely marker detection, marker selection, and three
different approaches for graft boundary detection, are applied
to ten CTA images. Since the automated procedure will have
to cope with a relatively large deviation in graft postures and
variations in the surrounding tissue, a diverse set of images is

TABLE I
PARAMETERS USED IN ALL EXPERIMENTS (MM), FOR SLICE BASED APPROACH

(METHOD I) AND THE TWO ORTHOGONAL APPROACHES(II AND III)

used, taken from different patients 0 to 48 months after graft
placement, with graft lengths varying from 13 to 19 cm, and
including kinked, rotated, and leaking grafts. The scan resolu-
tion is 0.488 0.488 2.0 mm. The images consist of 121 to
171 slices of 512 512 voxels. Each image contains between
20 and 32 markers, depending on the length of the implanted
graft. A total of 266 markers is present in the ten images. The
computation time was about 1 min on a 1.70-GHz Pentium 4 PC
for the marker enhancement filtering, and less than 10 s for the
marker selection and graft segmentation together.

A. Marker Detection

The marker detection filter, with threshold , was ap-
plied at an exponential range of scales (seven ranging from 1 to
8 mm). The resulting potential markers were compared to the
outcome of a manual marker detection strategy in which an op-
erator points out the center of each marker in a multiplanar re-
format facility. A marker candidate is considered a true marker
if it lies within a 2-mm distance (the slice thickness) to one of the
points indicated manually, and if that point has not yet been as-
sociated with another marker candidate. Otherwise, it is a false
positive.

Fig. 4(a) shows the results for each scale, summed over all
ten images, in a receiver operating characteristic (ROC) curve.
Sorted by decreasing marker likeness, the number of markers
detected correctly is plotted as a function of the number of false
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(a) (b) (c) (d)

Fig. 5. Volume representations of segmentations of the graft in dataset 3. From left to right, segmented by means of: (a) thresholded region growing under
expert guidance, the current practice; (b–d) the proposed methods, slice-based (b), orthogonal to the axis and sides (c), and orthogonal to the axis using a second
iteration (d).

positives. The area under a ROC curve measures the accuracy
of the test, in this case its ability to distinguish between true
markers and other bright blob-like structures present in the
image. Clearly, the filter performs best at a scale of 1.4 mm,
which is the size of the smallest markers. At smaller scales,
many of the larger markers are detected as two separate smaller
markers, of which one is counted as a false positive in our
evaluation. At much larger scales, mm, two separate
markers may be detected as one. At the optimum scale of
1.4 mm, 262 out of the total of 266 markers were detected,
and six false positives were stronger than the weakest marker.
Three of the cases in which a marker was not detected were
caused by the two end markers, which were very close and
hard to distinguish visually, being detected as one. In the fourth
case, the marker was detected but at a distance of 2.3 mm
from the point indicated manually, slightly over the allowed
2 mm. These errors will not hamper the use of the marker
configuration as an initialization for graft segmentation.

The original gray value of the marker candidates is given in
Fig. 4(b). Bone and calcifications cause false positives with an
intensity of up to 1300 Hounsfield Units (HU), and graft metal
up to 2300 HU. Another small peak at the maximum value
(2895 HU) is caused by two parts of one marker being detected
separately. Neither blob likeness nor original gray value can dis-
criminate all true positives, but all bone and calcification in-
duced false positives can be excluded by settingat 1500. The
remaining false positives are caused by graft metal. For robust
marker identification and subsequent graft localization, it is im-
portant to use prior knowledge on graft geometry, as described
in Section II-C.

B. Marker Selection

The marker selection scheme as described in Section II-C was
applied to the set of marker candidates that were detected at the
optimum scale of 1.4 mm. In all cases, our algorithm was able to
find the bifurcation markers and track series of markers on the
side of the graft, without including other marker-like structures.
In seven out of ten scans, all markers were found. When during
marker detection the two end markers were detected as one, nat-

urally only one marker could be selected. In two scans, an addi-
tional marker was missed because two successive markers were
both captured in one search space, and then only the strongest is
selected. Yet, the graft sides could be properly estimated in all
cases.

The exact positions indicated by the user are of negligible in-
fluence to the final graft approximation, provided that they are
within a reasonably small distance, i.e., a few millimeters, to
the true end marker position. As the marker candidate nearest
to the indicated point is selected, even if that is not the intended
end marker, it should be either another marker, causing the seg-
mentation to be only shorter, or a part of the attachment system,
which is also situated on the outside of the lumen and, thus, will
not introduce a large error in the approximated graft side. In
the ten scans of this study, the proper end markers were always
found.

C. Graft Segmentation

The three methods for graft boundary detection are applied
using parameter values as listed in Table I. These parameters are
kept constant throughout the experiments, but could be adjusted
if the scan protocol or the graft type changes. The robustness
of the method with respect to parameter variations is discussed
in Section III-C3. Sections III-C1 and Section III-C2 provide a
quantitative evaluation of the final results.

One dataset could not be segmented using the slice-based ap-
proach since part of the graft was aligned in-plane, showing
several successive markers in one slice. Segmenting orthogonal
to the vessel axis was possible in this patient. Fig. 5 shows
volume representations of the four different segmentations of
one image. Although the automated approaches orthogonal to
the axis yield subvoxel accurate segmentations, those have been
transformed back to an anisotropic voxel representation to en-
able comparison with the expert segmentations.

The segmentations obtained by our method are smoother than
the expert segmentation, mainly owing to marker-induced bright
artifacts that are included in the region growing process that is
used in the expert segmentation. Markers can also cause dark
spots in the lumen, resulting in holes in the volume obtained by
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Fig. 6. Detail of a CTA slice below the graft bifurcation (a), segmented by
region growing under expert guidance (b), the slice-based approach (c), and the
approach orthogonal to the graft axis (d).

region growing. In addition, we observe that the automated pro-
cedures measure two separate limbs, while the expert segmenta-
tion tends to combine the limbs into one region. Cross-sectional
images of the limbs in the original CTA image and in the seg-
mentations are shown in Fig. 6. They reveal that the graft at that
position indeed forms two separate lumens. Furthermore, the
slice-based approach shows a slight undersegmentation of the
graft limbs. This can be explained since the contour is searched
in a limited circular region, while if the limbs are not parallel to
the scan axis the in-slice contour can be quite elongated.

Fig. 7 provides projection images together with the detected
markers and the center lines obtained by method III. The images
show good results, even in grafts with severe kinking (first row),
twisted limbs (second row), or a rotated graft body (third row).

1) Overlap: Table II lists the relative overlap of the au-
tomated and expert segmentations for each scan, for the prox-
imal and distal part separately. The last columns give the rel-
ative overlap for the entire graft. The results for the graft body
show good agreement with the expert segmentation; the average
volume of overlap is 94.3% and the minimum is 89.8%. For this
part of the graft, the markers give a reliable approximation of
the central axis and no second iteration is performed. There is
no significant difference between the orthogonal and the slice-
based approach; the proximal part of the graft is often virtually
aligned with the scan axis and, therefore, the slice-based ap-
proach suffices.

Beyond the bifurcation, the method depending on the original
CT-slices does not yield satisfactory results; the relative volume
of overlap is 81.7% (min. 68.1%). This was anticipated as the
underlying assumption that the graft contour is approximately
circular does not hold when the lumen is oriented more parallel
to the slice, which is often the case in the tortuous graft limbs.
The results of the orthogonal approach are in better agreement
with the expert segmentations—the overlap is 85.1% (min.
78.2). In particular, the worst results from method I, obtained
for datasets 2, 3, and 5, have greatly improved. In those datasets,
a second iteration orthogonal to the estimated central limb axis

Fig. 7. Maximum intensity projection (MIP) images with the detected markers
and detected central lines of graft body and limbs drawn in. The three rows
show the results for three datasets; from top to bottom dataset 2, 5, and 8. The
projections are made under different angles of rotation around thez axis; from
left to right:�60 , 0 , and+60 .

still increases the agreement with the expert segmentations.
Still, the overlap is less than in the proximal part of the graft,
86.3% (min. 77.6%). This can be explained since in the distal
part the expert segmentation is more influenced by the marker
artifacts, as the markers are larger while the lumen is smaller.
The relative volume of overlap for the entire graft is 92.0%
(min. 86.8%) for the best of the three automated methods, and
95.1% (min. 92.1%) among the experts. Note, however, that
the measure of overlap is biased toward segmentations that
are obtained in a similar manner. A larger overlap does not
necessarily imply better reproducibility of measurements.

2) Volume Measurements:The clinically relevant quantity
that is obtained from these segmentations is the lumen volume.
Table III gives the relative difference in measured volumes
for the automated segmentations with respect to the expert seg-
mentations, along with the differences between expert measure-
ments.
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TABLE II
RELATIVE VOLUME OF OVERLAP
 (PERCENTAGE) AS COMPARED TO THEEXPERTSEGMENTATIONS, FORMETHODSI (SLICE-BASED), II (ORTHOGONAL), AND III

(ORTHOGONAL USING A SECOND ITERATION), AND AMONG THE THREE EXPERTS

TABLE III
AVERAGED ABSOLUTE VALUE hjDji, AVERAGED SIGNED VALUE hDi
AND THE EXTREME VALUE OF THE VOLUME DIFFERENCED BETWEEN

THE AUTOMATED METHODS I–III AND THE EXPERT SEGMENTATIONS,
AND AMONG EXPERTS(PERCENTAGE)

No significant difference in measured volumes for method III
and the expert segmentations was found. Assuming a t-distribu-
tion, the 95% confidence intervals for the relative volume differ-
ence were [ 3.0,6.1], [ 0.21,12], and [ 7.9, 2.5] between the
three experts and [5.9,6.3], [ 0.17,12], and [ 6.4,4.9] for the
automated method compared to the experts. The corresponding
probabilities of zero mean difference were , ,
and between the experts and , ,
and for the automated versus the expert measurements.
The averaged absolute volume difference equals the interexpert
difference: 3.5%.

3) Parameter Settings:The region in which the graft con-
tour is searched is defined by the set of parameters, , ,
and (see Table I). The search region should be as small as
possible, to prevent tracing of the wrong edge, but large enough
to ensure that the entire boundary is included. Examples of er-
rors caused by bad parameter settings are shown in Fig. 8. Fig. 9
shows the effect of parameter variations on the false positive and
false negative fraction for the final results of method III. The
false positives are computed with respect to the union of the
three manual segmentations, i.e., these voxels were labeled by
the automated method but not by any of the three experts. The
false negatives are the voxels that were consistently labeled as
lumen by all three experts and not by our method. Note that false
negatives include marker artifacts and calcifications that were
erroneously included in the region growing process, while false
positives include holes in the lumen caused by dark artifacts.

Naturally, if the search region excludes the true boundary, the
errors become large. This can be the case for very small, ,
or , and for either small or large . The false negative
fraction is robust to changes in , but the false positives in-
crease rapidly with increasing or . Outside the lumen
more and stronger neighboring edges appear, which complicates
graft boundary detection. This demonstrates the need for search
space confinement as is done based on the marker locations.
Satisfactory results were obtained for all datasets using the pa-
rameter values in Table I.

IV. CONCLUSION AND DISCUSSION

A method to localize and segment bifurcated aortic endo-
grafts in CTA scans is presented. The localization method is
based on the automated detection of radiopaque graft markers
using second-order derivative analysis combined with prior
knowledge of graft and marker configuration. In ten scans,
262 out of a total of 266 markers were detected. Adequate
approximations of both graft sides were obtained in all cases.

Three segmentation methods were tested. The first performs
graft contour detection in the initial CT-slices, the second in
reformatted slices orthogonal to the approximated graft axis,
and the third uses the segmentation from the second method to
find a more reliable approximation of the axis and subsequently
performs contour detection.

For the proximal part of the graft, where the graft is still fairly
straight and aligned with the body axis, all three methods yield
similar results, in good agreement with the segmentations ob-
tained by the experts. Beyond the bifurcation, performing con-
tour detection orthogonal to the axis is needed to obtain satisfac-
tory results in some patients. A second iteration orthogonal to
the estimated central limb axis still increases the agreement with
the expert segmentations. The relative volume of overlap for the
entire graft is 92.0% (min. 86.8%) for the best of the three au-
tomated methods, and 95.1% (min. 92.1%) among the experts.
No significant difference in measured volumes for method III
and the expert segmentations was found. The averaged absolute
volume difference equals the interexpert difference: 3.5%.
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(a) (b) (c) (d)

Fig. 8. The effect of parameterss , s , andd . (a) Correct segmentation,s = 4 mm,s = 1 mm. (b) Region too small,s = 1 mm. The true boundary is
outside the search region. (c) Region too large,s = 6 mm. Neighboring boundaries are traced. (d) Region does not match cross-sectional shape, part of the true
boundary lies outside the search region,d = 60 mm.

(a) (b) (c) (d)

Fig. 9. Average false positive fraction (black) and false negative fraction (gray) of the final results, as a function of the parameters. One parameter is varied while
all others are kept fixed at the values listed in Table I and denoted by vertical lines in the plots. Fractions are computed with respect to the volume of the relevant
graft part, i.e., the proximal part for figures (a)–(c) and the limbs for (d). (a) proximal inward deviations . (b) Outward deviations . (c) Bifurcation sized . (d)
Distal maximum radiusr .

Our method can easily be extended to cope with other types
of aortic endograft, viz. the tube graft and the monoiliac graft.
For this study, we have chosen the bifurcated graft, since it is
most commonly used and the most difficult to segment.

We have shown that, once the graft is precisely localized by
the position of its markers, a fairly simple segmentation scheme
can obtain good results. In future work, the method may be
made more robust to variation in graft geometry by relaxing
the bounds for the boundary tracing region and designing a cost
function that is better able to distinguish between lumen and ad-
jacent boundaries. Other possible applications for graft marker
detection are the definition of a central lumen line for accurate
diameter measurements, and performing graft curvature and tor-
sion measurements.
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