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ABSTRACT

A novel method for classification and quantification of vertebral fractures from X-ray images is presented. Using
pairwise conditional shape models trained on a set of healthy spines, the most likely unfractured shape is
estimated for each of the vertebrae in the image. The difference between the true shape and the reconstructed
normal shape is an indicator for the shape abnormality. A statistical classification scheme with the two shapes
as features is applied to detect, classify, and grade various types of deformities.

In contrast with the current (semi-)quantitative grading strategies this method takes the full shape into
account, it uses a patient-specific reference by combining population-based information on biological variation
in vertebra shape and vertebra interrelations, and it provides a continuous measure of deformity.

Good agreement with manual classification and grading is demonstrated on 204 lateral spine radiographs
with in total 89 fractures.
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1. INTRODUCTION

Among osteoporotic fractures, vertebral fractures are the most common and they occur in relatively young
patients. The presence of vertebral fractures is known to be a strong indicator for the risk of future spine and
hip fractures. This makes assessment of vertebral fracture important in clinical decision making and in clinical
trials assessing the efficacy of drug candidates.

Conventionally, fractures are classified from lateral X-ray images by experienced radiologists using a semi-
quantitative grading scheme.1 Six points are placed on the corners and in the middle of the vertebra endplates,
defining the anterior, middle and posterior heights. The fracture grade is then derived from these three height
measures or from the ratios between the heights, in connection with subjective judgement of the radiological evi-
dence by experienced radiologists. Alternatively, fully quantitative methods have been used that rely completely
on the three height measures, possibly in comparison with population based measurements and/or normalized
for inter-patient variability by comparison with measurements taken from a neighboring or reference vertebra.1–5

These coarse schemes, representing vertebral shape by three heights, are unable to capture subtle shape
changes, and suffer from variability in point placement. Studies have shown that a large number of fractures
goes undiagnosed with current methods.6, 7 More precise and objective measures of vertebral deformity are
therefore needed.

We propose a method to detect, classify, and grade the severity of vertebral fractures from lateral X-ray
images. Our method incorporates the following key features:

• Use of full vertebral contour

• Statistical model of shape variation of individual vertebrae over a (healthy) population

• Statistical model of interrelations between shapes of vertebrae within a (healthy) subject

• Supervised classification into different types of deformity
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Using the complete contour instead of the conventional three height measures provides a rich morphological
description and enables capturing of subtle shape differences. The statistical models that describe the normal,
biological variation in vertebra shape identify abnormal shapes, and the models of interrelations between shapes of
vertebrae within a patient allow adjustment of the models to individual patients. In the supervised classification,
models of typical osteoporotic deformity are incorporated so as to further distinguish normal shape variability
from osteoporosis-related deformation.

Variations in shape of individual vertebrae are modeled using a point distribution model.8 For the vertebra
interrelations within a patient we use conditional shape models to reconstruct the most likely shape of a vertebra
given the known shape of a neighboring vertebra. If both these models are constructed from a training set of
normal, healthy spines this provides an estimate of what the vertebra shape would have been if it were normal.
In previous papers we have shown that vertebrae in healthy spines can be accurately reconstructed from their
neighbors9 and that individual pairwise reconstructions can be reliably combined into one reconstruction that is
accurate also in the presence of deformities.10 In the current paper we explore in more detail how the differences
between the reconstruction and the true shape as observed in the image can be used to assess severity and subtype
of fracture. Based on a training set of shapes with known fracture types, the presence, type, and severity of
deformity is determined using discriminant analysis.

2. METHODS

This section describes the models used. The procedure to reconstruct unfractured vertebra shapes from neigh-
boring vertebrae is described in more detail in an earlier paper.10

The variations of vertebra shape over a training set of examples of unfractured spines are modeled using the
linear point distribution models (PDM) as proposed by Cootes and Taylor.8 PDMs model the shape probability
distribution as a multivariate Gaussian in a subspace of reduced dimensionality. Shapes are defined by the
coordinates of a set of landmark points which correspond between different shape instances. A collection of
training shapes are aligned using for instance Procrustes analysis11 and a principal component analysis (PCA)
is applied to the aligned shape vectors. To this end, the mean shape x, the covariance matrix Σ, and the
eigensystem of Σ are computed. The eigenvectors φi of Σ provide the so-called modes of shape variation which
describe a joint displacement of all landmarks. The eigenvectors corresponding to the largest eigenvalues λi

account for the largest variation; a small number of modes usually captures most of the variation. Each shape
x in the set can then be approximated by a linear combination of the mean shape and these modes of variation:

x = x + Φtb + r

where Φt consists of the eigenvectors corresponding to the t largest eigenvalues, Φt = (φ1|φ2| . . . |φt), b is a
vector of model parameters that weigh the contribution of each of the modes, and r is a vector of residual shape
variation outside of the model subspace.

2.1. Modeling relations between vertebrae
We model the relations between two vertebrae in the same image as two conditional models, describing the
expected shape and shape variation of the shape of the one vertebra if the shape of the other is known. The
distribution P (S1|S2), the probability distribution of a shape S1 given a known other shape S2, can be modeled
as the Gaussian conditional density

P (S1|S2) = N (µ,K) (1)

with
µ = µ1 + Σ12Σ−1

22 (S2 − µ2)

K = Σ11 − Σ12Σ−1
22 Σ21

where µ1 and µ2 are the mean shapes of the training sets for S1 and S2, and covariances Σij are obtained from
the combined covariance matrix

Σ =
[

Σ11 Σ12

Σ21 Σ22

]
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as
Σij =

1
n − 1

∑
n

(Sin − µi)(Sjn − µj)T .

Applied to pairwise vertebra shape prediction from neighboring vertebrae, S2 is the predictor vertebra shape,
S1 is the shape to predict, µ is the maximum likelihood estimate of S1 given S2, and K is the variance in the
estimate.

2.2. Combining shape estimates

The pairwise shape prediction of the previous subsection results in several shape estimates for each vertebra.
Not all of these estimates will be equally accurate. For instance, one would expect that the vertebral shape
correlation between two direct neighbors is stronger than between two vertebrae that are further apart. In a
fractured spine, the fractured vertebra(e) will likely produce inaccurate estimates of normal vertebra shape, even
for the direct neighbors. We will therefore define the final shape estimate as a weighted combination of the
individual predictions, where the weights express the degree of belief in each estimate.

We assume that the observed vertebral shapes are produced by the underlying shape model of normal shapes,
resulting in a multi-variate Gaussian with variances λi in t directions, plus additional uncorrelated Gaussian noise
with a variance σ2

r in all directions which accounts for any residual shape differences. The probability density
for a shape S is then given by the product of the Gaussian densities of the shape model and the residual model:

p(S|θ) = cscrexp[−1
2
(Ms + Mr)] (2)

cs =
1√

(2π)t
∏t

i=1 λi

, Ms =
t∑

i=1

b2
i

λi

cr =
1√

(2π)nσ2n
r

, Mr =
|r|2
σ2

r

where bi are the model parameters from the PDM and r is a vector of residuals.

The probability density for each conditional shape estimate can be expressed as
P (S1|S2)P (S2), where P (S2) is the probability that the predictor shape S2 is a valid normal (unfractured) shape,
and the variance in P (S1|S2) expresses the uncertainty in the prediction of S1 from the model conditional on
S2. The weight for the ith prediction of S1 is then given by

wi =
P (S1|Si)P (Si)∑
i P (S1|Si)P (Si)

, (3)

and the individual estimates are combined as a weighted sum.

P (Si) can be determined by substituting the predictor shape Si for S in Equation 2 and the mean and
covariance of the training set for the predictor shapes for θ, whereas for P (S1|Si) the predicted shape for S1 and
the mean and covariance of the conditional model must be substituted.

2.3. Fracture Classification

The training set is separated in classes of normal vertebrae and vertebrae with different types of deformity, as
indicated by an expert radiologists, and a classifier is subsequently trained to distinguish between the different
classes.

A classifier can be written in terms of discriminant functions di.12 An object with feature vector x is then
assigned the class that corresponds to the largest di(x). We search for the classifier that minimizes the ‘risk’
associated to misclassifications. If we assume a so-called 0-1 loss function — false positives and false negative
detections are equally bad — the optimal discriminant function that minimizes the risk is

di(x) = p(x|wk)P (wk).
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That is, each object should be assigned the class that maximizes the posterior probability. For a multivariate
Gaussian distribution p(x|wk) this becomes

di(x) = lnP (wi) − 1
2
ln|Σi| − 1

2
[(x − µi)T Σ−1

i (x − µi)],

which is known as the quadratic discriminant classifier as the boundaries between classes are quadratic.

The quadratic discriminant classifier is optimal if the classes are Gaussian distributed with arbitrary, unequal
covariances. However, if the number of samples is small compared to the dimensionality of the feature space,
the estimate of the individual class covariance matrices Σi from the data may be unreliable. It may therefore be
beneficial to simplify the assumed distribution, thus reducing the number of parameters to be estimated. One
assumption that is often used is that the classes are Gaussian distributed with arbitrary, but equal, covariances.
The resulting optimal classifier is the linear discriminant classifier:

di(x) = lnP (wi) − 1
2
[(x − µi)T Σ−1(x − µi)]

where Σ is the pooled covariance matrix, i.e. the average covariance matrix weighted by the class prior proba-
bilities.

One can simplify the model even more and assume that the features are uncorrelated, which leads to a
diagonal covariance matrix. If one would assume that the class priors are equal and, in addition, the covariance
matrix is the identity (all features have equal variance), the optimal discriminant classifier turns into the nearest
mean classifier.

Several hybrid approaches are possible in which the estimates of the covariances are regularized by adding for
instance a small portion of the pooled covariance and/or the identity matrix.13 Another possibility is to apply
spatial smoothness constraints on the coefficients as in penalized discriminant analysis.14 This may improve
accuracy especially in situations in which there are many highly correlated features, such as in landmark based
shape representations. In all cases, the optimal regularization parameter(s) can be selected using cross-fold
validation on the training set.

In the experiments in this paper we have used a linear discriminant classifier that is further regularized by
replacing

Σ′ = (1 − α)Σ + ασ2I (4)

where I is the identity matrix, σ2 is the mean variance, and α a regularization parameter with 0 <= α <= 1.
Varying α makes the classifier vary between the non-regularized linear discriminant classifier and the nearest
mean classifier weighted by the class prior probabilities.

3. EXPERIMENTS AND RESULTS

Experiments were performed on 204 spine radiographs from 204 women enrolled in a post-menopausal osteoporo-
sis trial. The dataset is diverse, ranging from normal spines to spines with several severe fractures. The original
radiographs have been scanned and the lumbar vertebrae L1— L4 were annotated and graded by experienced
radiologists. Fractures were identified and graded according to the Genant at al. method of semi-quantitative
visual assessment1 in severity mild, moderate, or severe and type wedge, biconcave, or crush fracture. According
to the guidelines fractures are indicated as mild if one of the three heights is between 20% and 25% smaller than
the maximum of the heights, moderate if the difference is between 25%, and 40% and severe if the difference is
larger than 40%. A total of 89 fractures was found (22 mild, 49 moderate, 18 severe; 60 wedge, 23 biconcave,
6 crush). The average shapes and predictions of the unfractured vertebrae and each of the three fracture types
is shown in Figure 1. The normal shapes are predicted very well, whereas all types of fractures reveal a large
difference with the predicted normal shape.

A set of leave-one-out experiments was performed in which the prediction models and classifiers for each image
were trained on the remaining 203 images. Classifications are performed using the Matlab pattern recognition
toolbox prtools.15 Pilot experiments showed that a (regularized) quadratic discriminant classifier had large
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Figure 1. The average shapes (blue lines) and their average predictions (red, dashed lines) for different deformities. From
left to right: Normals, wedge fracture, biconcave fracture, crush fracture.

error rates, likely owing to the relatively low number of fractures in the training set which makes it difficult
to estimate individual class covariance matrices correctly. In the remainder of the experiments, the regularized
linear discriminant classifier of Equation 4 is used with α varying between zero and one.

We compared performance of the following features based on the full contour or on the six point representation:

shape & pred all landmark coordinates of the aligned vertebral contours and their predictions of unfractured
shape (the proposed approach)

shape all landmark coordinates of the aligned full vertebral contours

RMS the root mean squared distance from all points where the prediction is outside the true shape to their
closest points on the true shape, as was used in10

six points all landmark coordinates of the six point shape representation

heights the anterior, middle, and posterior heights

heightratio the relative difference between the minimum and the maximum of the three heights, expressed as
a percentage of the maximum height. This is the quantitative criterion used in semi-quantitative grading.

A/P & M/P ratios the ratios between anterior and posterior height and between middle and posterior height

The full contour features are tested both with 25 landmarks and with 50 landmarks in the contour. To reduce
the influence of deformities such as osteophytes on the alignment, shapes are aligned using Procrustes alignment
based on the four corner points only.

Figure 2 shows the classification error as a function of α for the different feature vectors, where classification
error is defined as the percentage of misclassifications with respect to the radiologists’ scoring. In nearly all
cases, regularization helps improve the classification performance, and as expected, the classification into different
fracture types requires more regularization than the two-class classification, as do the higher dimensional feature
spaces (50 landmarks compared to 25 landmarks, shape and prediction compared to shape alone, shape measures
compared to six point representations). The minimum classification error for each of the features is given in Table
1. The classification using the full contour features (shape and shape & pred) seems to perform slightly better
in all cases than using the features derived from six points. In a McNemar’s test16, 17 the difference is significant
only between the shape based features and A/P & M/P ratios and RMS for the fracture vs normal classification,
and between the shape based features and minimum/maximum height ratio and RMS for the classification in
fracture types (p < 0.05).

In the remainder of the experiments, we use the contour features based on 25 landmarks only. Figure 3 gives
the ROC curves for fracture detection on the basis of shape and prediction features. Overall, we are able to
distinguish fractures from normals; classification is near-perfect for moderate and severe fractures with an area
under the ROC (AUROC) of 1.00 and very good for mild fractures (AUROC 0.95).

Figure 4 shows two examples where our approach, using the reconstructed unfractured shape estimate, was
able to detect a mild fracture that was classified as normal using shape alone.
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Figure 2. Classification error (percentage) as a function of regularization parameter α. The figure legend shows the
minimum error achieved for each of the features. The first row provides the results for classification in fractured and
unfractured vertebrae whereas the second row shows the results for classification in different types of deformity (no
fracture, wedge, biconcave, or crush fracture). The figures on the left and in the middle depict the errors for the shape
model based features: the full shapes (‘shape’, the full shape and predictions (‘shape & pred’) and the summarized distance
between shape and prediction as in10 (‘RMS’). Left: models with 25 landmarks; Middle: models with 50 landmarks; Right:
measures derived from the six point annotation.

Fractured vs unfractured Fracture type
shape & pred 2.33 2.70
shape 2.33 2.82
six points 2.57 3.42
heights 3.43 3.55
heightratio 3.55 6.86
A/P + M/P ratio 3.80 4.17

Table 1. Classification errors for the best performing regularization parameter α for each of the feature spaces. The
results in bold are significantly different (p < 0.05) from the results of classification based on the shape and reconstructions
(‘shape & pred’).

The posterior probability 1 − p(x|wunfractured) that a vertebra with features x is fractured can be used as a
measure of fracture severity. We found a good correlation (0.91) between this measure and the fracture severity
as indicated by the radiologists.

Finally, the confusion matrix for fracture type characterization on the basis of shape and prediction features
is shown in Figure 5. The most frequent error is that wedge fractures are classified as normals in 10% of the
cases.

4. DISCUSSION

The proposed method relies on full vertebra outlines, for which we used manual annotations by radiologists. This
manual annotation procedure is of course time consuming and hampers large-scale use of these methods. Several
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Figure 3. ROC curves for fracture detection, for different fracture type and severity. The numbers in the legend denote
the areas under the ROC curve.

Figure 4. Examples where the patient specific model is able to detect a mild fracture that the radiologist had indicated,
whereas the shape model of individual vertebrae alone cannot make the distinction. In both cases, the fracture is in L2
(the second vertebra from the top). The solid blue line denotes the true shape and the dashed, red line the reconstruction.

N W B C
normal (N) 723 1 3 0
wedge (W) 6 50 2 2

biconcave (B) 0 2 19 2
crush (C) 1 1 2 2

Figure 5. Confusion matrix for fracture type classification with shape and reconstruction. The rows give the true class
labels and the columns the determined labels.
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authors have previously proposed methods for automatic and semi-automatic spine segmentation from X-ray or
dual X-ray absorptiometry (DXA) images with the aim of automating vertebral morphometry.18–21 Although
all these approaches work less good on fractured than on normal vertebrae, results are promising and it seems
that at least semi-automatic segmentation would be feasible.

Previously, Smyth et al. used a Mahalanobis distance classifier — a quadratic discriminant classifier with
assumed equal class priors — on a vertebra shape representation derived from DXA images to discriminate
between fractured and unfractured vertebrae.18 In a dataset with 128 normal images and 128 images with
a fracture, they found a slight, but significant (p=0.03), improvement in fracture detection between the three
height representation and the full contour representation. It is difficult to compare the results between these two
studies, as the images, modality, and number of fractures are different. Overall, our results are comparable to
or slightly better than those obtained by Smyth et al. with areas under the ROC curve of 0.987 vs. 0.957. In
contrast to Smyth et al. we distinguish not only unfractured and fractured vertebrae but also different fracture
types. This may be useful in the study of the relation between fracture type and symptoms or disease progression,
although the need for this has not been clearly established.22–24 In our study, separating into different fracture
types seemed to also slightly improve the recognition of unfractured shapes.

In our experiments we found little difference between a full contour shape representation and the more complex
shape and prediction representation. On of the reasons for this could be that the training set is relatively
small, especially in the number of fractures, which makes it difficult to estimate large covariance matrices
correctly. Another reason could be that our data is relatively homogeneous – although taken in different centers
in Denmark, all images were from Danish women in the same age range, which makes the use of patient specific
models less important. Previous work by other authors, comparing absolute height measures to their normalized
counterparts, seemed to indicate that comparison with a neighboring or reference vertebra does improve results.

Interestingly, the percentage difference between minimum and maximum height, which is the quantitative
measure that is used as the basis of the semi-quantitative grading, seems to perform worse in fracture detection
(error rate 3.55%) than the shape based representations (2.33%) and even than the six point (2.57%) and three
height representations (3.43%), which may indicate that the more complex representations do indeed capture
some of the more subtle shape variation that the trained experts include in the subjective judgement.

The most frequent classification error is that wedge fractures are sometimes classified as normals. It must be
noted here, that the models are trained on and compared to a surrogate gold standard: the radiologists’ scoring
performed by different radiologists, with only one scoring per case. In cases of mild shape abnormality, such
as age-related bone remodeling that results in a slight ‘wedging’ of the vertebra, radiologists often don’t agree
whether it is a mild fracture or not. In clinical trials, it may therefore be of great value to report, instead of the
categorical variable, a continuous measure of deformity such as the one proposed in this paper.

5. CONCLUSIONS

We present a shapemodel-based method for classifying and grading vertebral deformities. Statistical models are
used of shape variations between and within subjects, for normal as well as fractured vertebrae. This helps
discriminating between normal, biological variation and osteoporosis related deformity. The method shows good
agreement with manual classification on a large set of images.
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