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Abstract

In many cases, the accuracy of statistical pixel classi-
fication can be improved by applying a spatially varying
prior that can be derived from a shape model. We propose
to represent the prior knowledge on the spatial distribution
of tissue classes by a distribution of shape particles, each
representing one possible distribution of tissue classes.

Classification and shape can then be optimized jointly
by alternating a particle filtering step, in which the shape
particle distribution is evolved under the influence of the
current classification, with an update of the classification
estimate using the shape distribution. Since a large number
of shape hypotheses is used this method does not easily get
trapped in local maxima. By applying shape models that
are conditional on other, more easily discernible, objects in
the image one can perform shape guided classification even
if the shapes themselves are hardly visible.

The method is demonstrated on the task of detecting aor-
tic calcifications in X-ray images, in which calcifications
can only be present inside the aorta — mainly on the aortic
wall — but the aorta itself is not visible.

1. Introduction

Statistical pixel classification is a popular tool for seg-
menting medical images [2, 3, 24–27]. It has been applied
especially in tasks where the underlying shape of the ob-
ject is not easily modeled, such as in white and gray mat-
ter segmentation in brain images, in blood vessels, and in
pathologies of various kinds. Owing to image noise and in-
consistencies in object appearance a segmentation based on
pixel classification alone will usually result in a large num-
ber of misclassified pixels. Moreover, objects with simi-
lar appearance cannot be distinguished without using addi-
tional knowledge.

Prior knowledge about the fact that the object we try
to segment is usually not a single pixel can be incorpo-
rated in various ways. Efforts to improve classification per-
formance range from applying simple morphological post-

processing, adding position features to the appearance fea-
tures, to performing contextual classification using Markov
random fields and relaxation labeling methods (see for in-
stance [22, 24, 30]). Especially in brain segmentation, reg-
istration to a digital atlas has been used extensively [2, 11,
25, 26]. These methods provide a rich description of possi-
ble spatial dependencies of tissue classes, but they rely on
the (rigid or elastic) matching of an atlas to the image and
therefore require the appearance of the entire image to be
fairly consistent between subjects.

We propose to represent the prior knowledge on the spa-
tial distribution of tissue classes by a distribution of shape
‘particles’ that evolves under the influence of image terms.
The particles are sampled from a statistical shape model so
as to constrain the allowed deformations. Each particle rep-
resents one possible distribution of tissue classes, and the
complete collection of shape particles defines a spatially
varying prior that is used in pixel classification. The parti-
cle cloud defining the spatially varying prior can be evolved
similar to Monte Carlo methods known as ‘condensation’,
‘particle filtering’, or ‘factored sampling’ [9, 14, 17]. In
each iteration, shape particles are weighted by their like-
lihood and a new shape set is constructed using weighted
resampling and a small amount of random perturbation [8].
The joint optimum of classification and shape can be found
by alternating the particle filtering step with an update of the
classification estimate using the current shape distribution.
The optimization by stochastic sampling makes the result
relatively independent of the initialization and guarantees
convergence provided that enough samples are used.

An important difference with the methods based on atlas
registration is that the shape model can constrain the prob-
ability template even in images where the boundaries of the
shape itself are not (or hardly) visible, as long as there exists
a training set in which the shapes have been outlined. This
can for instance be the case if images of another modality
are available, or if a shape can only be determined by the
existence of lesions.

In this work we focus on such an application — detect-
ing calcified plaques in the lumbar aorta from standard ra-
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diographs. A large number of structures in the image, e.g.
bone and image artifacts, have a similar appearance as calci-
fication and therefore prior information about the expected
location of calcifications is needed for accurate detection.
Obviously, aortic calcifications can only be present inside
the aorta, but unfortunately the aorta itself is invisible in X-
ray unless it contains calcifications. In this task registration-
based methods would clearly fail. However, the shape and
position of the aorta are strongly correlated to the shape
and position of the spine, which is much easier detected in
the image. We will exploit this correlation by applying a
conditional model of aortic shape given the spine to guide
appearance-based calcification detection.

Section 2 provides some background on aortic calcifica-
tions. The basic approach of shape particle guided classi-
fication is described in Section 3. The implementation for
calcium detection, combining models of calcium distribu-
tion and a conditional model of the aorta given the spine,
is described in Section 4. Section 5 presents experiments
on 87 digitized X-ray images, and a conclusion is given in
Section 6.

2. Aortic calcification

Calcifications in the abdominal aorta were shown to cor-
relate with the presence — or future development — of cal-
cifications at other sites such as the coronary arteries, and
are an important predictor for future cardiovascular mor-
bidity and mortality [10, 28, 29]. Accurate and reproducible
measurement of the amount of calcified deposit in the aorta
is therefore of great value in diagnosis, treatment planning,
and the study of drug effects. Several automatic and semi-
automatic calcium scoring methods have been proposed for
CT [16, 18].

This paper aims at automatically detecting calcified
plaques in the lumbar aorta from standard radiographs.
Although CT is better suited for identifying and quanti-
fying atherosclerosis, standard X-rays have the advantage
that they are cheap and fast. Several approaches to manu-
ally quantifying the severity of aortic calcification in radio-
graphs have been proposed, of which the antero-posterior
severity score by Kauppila et al. [19] is the most popular.
For this score, the lumbar part of the aorta is divided into
four segments adjacent to the four vertebra L1-L4, and the
severity of the anterior and posterior aortic calcification are
graded individually for each segment on a 0-3 scale. The
results are summed in a composite severity score ranging
from 0 to 24. Such manual scoring systems have been suc-
cessfully applied in epidemiological studies, but can not de-
scribe subtle changes in disease progression and are labor-
intensive and prone to inter- and intra-observer variations.

An automated calcification detection scheme would al-
low for automatic scoring according to the current semi-
quantitative standards as well as for continuous and likely

more precise quantification by for instance counting the
number of calcified pixels or assessing the density of in-
dividual calcifications [4]. To our knowledge, no method
by other authors currently exists for automatic detection of
calcified plaques from standard radiographs.

We propose to combine pixel classification on the basis
of local intensity features with a spatially varying prior that
gives the probability of a pixel containing calcium, depen-
dent on the position of a pixel within the aorta. In general,
the shape and location of the aorta will not be known a pri-
ori, and since the aortic walls are only visible if calcium is
present, automatic aorta segmentation can not be used as a
first step to guide calcium detection. However, the shape
and location of the aorta are strongly correlated with the
shape and location of the spine [5]. We therefore use a set
of training images in which the aorta and the vertebrae have
been annotated to model the probability density function of
aorta shape and location conditional on the spine shape. In
a previous paper, we showed how samples from this shape
model can be combined with a model of how the calcium is
distributed within the aorta to define a spatially varying cal-
cium prior dependent on the position and shape of the spine
[7]. Application of this prior improved results of standard
pixel classification. In this paper, we iteratively update the
spatially varying calcium probability estimate and the clas-
sification to achieve their joint optimization.

The method requires the localization of the corner and
midpoints of the first four lumbar vertebrae. Currently man-
ual input is used here — obtained from a vertebral mor-
phometry study on the same dataset — but these point po-
sitions could also be derived from an automatic spine seg-
mentation, see e.g. [8, 23].

3. Shape particle guided classification

We optimize shape templates of class labels on an image
using stochastic sampling optimization, similar as was done
by de Bruijne and Nielsen in [8]. However, in this case the
shape templates do not give a class label deterministically
but define a probability for each class and each position in
the template, and the estimated image labeling is updated
during filtering.

Our aim is to find an image labeling C which is consis-
tent with both the image I and a prior shape model P (S).
We will approach this by first obtaining the joint posterior
probability distribution P (C,S|I) for the labeling C and a
set of shape samples S and then marginalizing over S.



To perform this joint optimization, one can use an itera-
tive procedure:

Start with an initial labeling estimate C0 and shape set
S0 = {S1, S2, . . . , SN} sampled randomly from the
shape prior

Iterate

1. Sample St from P (S|Ct−1, I,St−1)

2. Set estimate Ct = argmaxCP (C|I,St)

In the first step, a new shape set St is sampled from the
current shape set St−1 using likelihood weighting based on
the current classification estimate. In the second step, the
classification estimate is updated with the shape prior from
the new shape set. In this way, the statistical classification
is moderated with prior information from a shape model,
whereas the variance in this shape prior decreases as image
evidence for preferring some shapes above others is accu-
mulated.

3.1. Initial classification estimate

We will use class probability density measurements as
the image observations. The class probabilities are obtained
using a pixel classifier trained to distinguish between pixels
of different classes on the basis of local image descriptors.
We have chosen a general scheme in which pixels are de-
scribed by the outputs of a set of Gaussian derivative filters
at multiple scales, and a k-NN classifier is used for proba-
bility estimation. The probability that a pixel with feature
vector x belongs to class ω is then given by

P (ω|x) =
kω

k
, (1)

where kω among the k nearest neighbors belong to class ω.
The initial labeling C0 is the soft labeling based on pixel

appearance alone

C0(j, c) = P (ωc|xj) (2)

which defines the probabilities for each of the classes c
occurring in each pixel j.

3.2. Prior shape model

Any kind of shape model from which samples can be
drawn can be inserted here. We will use the popular linear
point distribution models (PDM) as proposed by Cootes and
Taylor [6] to model the object shape variations observed in
the training set.

In PDMs, shapes are defined by the coordinates of a
set of landmark points which correspond between different
shape instances. A collection of training shapes are aligned

using for instance Procrustes analysis [13] and a principal
component analysis (PCA) of the aligned shapes yields the
so-called modes of shape variation which describe a joint
displacement of all landmarks. Each shape can then be ap-
proximated by a linear combination of the mean shape and
these modes of variation. Usually only a small number of
modes is needed to capture most of the variation in the train-
ing set.

3.3. Shape set resampling

Each shape Si is associated with a class probability map
P (ωcj |Si) which defines the probabilities for each of the
classes occurring in each pixel. This class probability map
can be based on expert knowledge of the problem at hand or
it can be derived from a training set. Section 4.2 describes
how the calcium probability we use in the experiments is
obtained.

The shape set is updated using importance sampling and
diffusion. Each shape Si is assigned an importance weight
wi which reflects the degree of similarity between the cur-
rent estimate of calcium probabilities and the calcium distri-
bution that would be expected from the current shape. One
possibility is to use the inner product between the two prob-
ability maps, as in:

wi =


 1

Z

∑
j

∑
c

Ct−1(j, c)P (ωcj |Si)




α

, (3)

where j are the pixels in the shape template (the image
pixels that are covered by the shape template Si), Z is a
normalization factor which corrects for differences in tem-
plate size, α is a tunable parameter controlling the speed of
convergence of the algorithm, Ct−1 is the current estimate
of the probability that the pixel j belongs to the class ωc,
and P (ωcj |Si) is the probability that a pixel j is of class ωc,
given the aorta shape Si.

A new shape set St is generated from the current shape
set St−1 using weighted sampling with replacement, and
subsequently noise is added to the shapes that were selected
multiple times in order to explore the solution space around
these shapes. The noise represents a random diffusion.

In this iterative process, successful shapes multiply and
unlikely shapes will vanish. Thus, the distribution of shape
samples that make up the probability map ‘condenses’ in
the presence of consistent image evidence. This leads to a
more peaked prior probability density and a more precise
labeling estimate.

3.4. Spatially varying classification

Each shape template defines a probability distribution of
calcium given the shape, and the probability distribution



due to the shape collection is simply the average of all indi-
vidual probability maps:

P (ωcj |S) =
∑

i

P (ωcj |Si)P (Si) (4)

To simplify optimization, we assume that the two indi-
vidual class probabilities, based on appearance and on po-
sition with respect to aorta shape, are independent. The
classification estimate in each iteration is then given by the
multiplication of the initial classification estimate with the
current shape prior.

Ct(j, c) = P (ωcj |xj ,St) = P (ωc|xj)P (ωcj |St). (5)

Note that classification estimates as used during opti-
mization are soft classifications, giving the vector of proba-
bilities for each pixel. As the final classification estimate a
hard classification is obtained from the probabilistic classi-
fication C by selecting an appropriate threshold.

4. Aorta shape particle guided calcification de-
tection

This section describes our choice of shape prior P (S)
and class probability map P (ωcj |Si) that are specific to aor-
tic calcification detection.

4.1. Conditional shape model

To construct a conditional shape model of the aorta given
the spine, the spine and aorta landmarks are combined into
one shape vector. The shapes are aligned using Procrustes
alignment to minimize the sum of squared differences be-
tween the spine parts of the combined shape vectors. The
distribution P (S1|S2), i.e. the probability distribution of the
expected aorta shape and pose S1 for a given spine S2, can
then be modeled as the Gaussian conditional density

P (S1|S2) = N (µ,K)

with
µ = µ1 + Σ12Σ−1

22 (S2 − µ2)

K = Σ11 − Σ12Σ−1
22 Σ21

where µ1 and µ2 are the mean aorta and spine shapes re-
spectively, and covariances Σij are obtained from the co-
variance matrix of the combined model

Σ =
[

Σ11 Σ12

Σ21 Σ22

]

as

Σij =
1

n − 1

∑
n

(Sin − µi)(Sjn − µj)T .

Figure 1. Cross-sectional profile (left) and longitudinal profile
(right) of calcium distribution inside the aorta. Prevalence of cal-
cium is higher at the aortic walls and near the aortic bifurcation.

Σ12Σ−1
22 is the matrix of regression coefficients of (S1 −

µ1) on (S2 − µ2). Usually, Σ22 is not invertible owing to
multi-collinearity in the landmark positions and unreliable
due to chance covariance in a limited training set. Some
regularization is therefore required. One option is to replace
Σ22 by Σ22 + γI , where γ is a positive and typically small
constant. This approach is similar to regularization as was
proposed for use in linear discriminant analysis [12] and
equivalent to ridge regression [15]. As γ tends to infinity,
the influence of the spine decreases; the remaining model is
the original aorta model that describes the shape variation
in the aorta independent of the spine.

An example of the modes of variation of such a condi-
tional model is given in Figure 3. From this illustration, it
is clear that the estimate of the posterior aortic wall, closer
to the spine, is more strongly correlated with the spine land-
marks and therefore exhibits smaller variation in the condi-
tional model. The same holds for the upper part of the aorta
which is more closely attached to the spine.

4.2. Class probability map

We use two classes in the probability templates, calcium
and non-calcium. The non-calcium class is defined by a
small boundary around the aorta. The calcium class has
zero probability everywhere outside the aorta, and non-zero
probability everywhere inside, but the magnitude varies
with the position in the aorta.

It is well known that the distribution of calcification in
the aorta is not uniform. The number of plaques increases
towards the aortic bifurcation, and due to the projection
imaging the majority of the plaques is visible along the an-
terior and posterior aortic walls and not in between.

If a large training set of example images with annotated
aorta and calcifications was available, the probability of
presence of calcium in each pixel could be estimated by la-
beling calcified pixels as 1 and non-calcified as 0, warping
all aortas onto the mean aorta shape, and computing the av-
erage aorta label image.

If the training set is limited the above procedure will gen-
eralize poorly to unseen images; pixels inside the aorta may
coincidentally have a very high or low probability of being



Figure 3. Modes of variation of the aorta given the known positions
of vertebrae corner- and mid-points. The solid black line denotes
the mean aorta shape, the mean shape ± 3 standard deviations are
dashed in gray and black. From left to right the first three modes
of variation are shown.

calcified. As a trade-off between generalizability and speci-
ficity we model the cross-sectional and longitudinal pres-
ence of calcium independently.

In a set of labeled training images, the part of the aorta
adjacent to the first four lumbar vertebrae is selected and in-
tensity profiles are sampled perpendicular to the vessel axis,
reaching from the anterior to the posterior wall. All profiles
are normalized to equal length and averaged to form a cross-
sectional calcium prior distribution. For each image, one
longitudinal profile is formed by summing the values in the
individual profiles. An average longitudinal profile is com-
puted by length normalizing and averaging the longitudinal
profiles of all images.

For a given aorta shape, a calcium prior probability map
can then be constructed by sweeping the cross-sectional
prior profile along the axis, modulated with the longitudi-
nal profile. The two profiles and an example of a calcium
probability map are given in Figures 1 and 2.

5. Experiments

Leave-one-out experiments are performed on 87 lateral
spine radiographs taken from a combined osteoporosis-
atherosclerosis screening program. The dataset is diverse,
ranging from uncalcified to severely calcified aortas. The
original radiographs have been scanned at a resolution of
0.1 mm per pixel and were inverted for better visibility of
calcific deposits. A medical expert outlined all calcifica-
tions adjacent to vertebrae L1 through L4 manually and
also placed 6 points on each vertebra as is routinely done
in quantitative vertebral morphology studies.

5.1. Parameter settings

Before further analysis the images were normalized to
zero mean and unit variance. The appearance features used
include the original image and the derivatives up to and in-
cluding the third order computed at three different scales (1,

4.5 and 20 pixels). Training pixels were selected randomly
from a region of interest including the aorta and its direct
surroundings. The set of samples is normalized to unit vari-
ance for each feature, and k-NN classification is performed
with an approximate k-NN classifier [1] with k=25. In all
cases, results reported are accuracies of hard classification
with the overall optimal threshold that is kept constant for
all 87 images.

In the conditional shape model, 6 manually placed land-
marks on each of the 4 vertebrae are used and 50 aorta
landmarks are selected on each aortic wall by equidistant
sampling along the manual outlines. The first 5 modes of
shape variation are selected for the conditional shape model,
γ = 10−4 is used for regularization, and N = 100 aorta
shapes are sampled randomly from the model to form the
calcium prior probability map. The diffusion kernel applied
during particle filtering is proportional to the shape model
with 30% of the original variance, and the factor determin-
ing the speed of convergence was chosen as α = 2. The
optimization was run for a fixed number of 10 iterations.

5.2. Results

Performance of standard pixel classification and shape
guided classification are measured in a region of interest
surrounding the aorta. To make a fair comparison with pixel
classification, we have chosen a region of interest (ROI) that
can be selected using the location of the spine in the im-
age and basic knowledge of distances between spine and
aorta. The region is formed by connecting the anterior cor-
ner points on vertebrae L1-L4 with line segments and trans-
lating the thus obtained curve to the positions of minimum
and maximum distance of the aorta with respect to this spine
curve as were observed in the training set. Examples of
ROIs obtained are given in Figure 4.

The pixel classification alone yields an average accu-
racy, defined as the percentage of correctly classified pixels
within the ROI, of 96.7%. Combining this with the spatially
varying prior results in an improvement to 96.9%. The dif-
ference may seem small, but because of the relatively small
number of calcification pixels, differences of a few percent
point in accuracy are important. The difference between
standard classification and shape guided classification is
highly significant with p < 0.001 in a paired t-test. The κ-
statistic for observer agreement, which accounts for the in-
balance of positives and negatives, increased from 0.09 for
pixel classification to 0.23 for shape particle guided classifi-
cation — an improvement from ‘slight’ to ‘fair’ agreement
according to Landis and Koch [20]. The average overlap
area of the mean aorta shape from the final particle distri-
bution with the manually annotated aorta is 87% and the
distance between the two contours is on average 2.7 mm.

Figure 4 shows examples of the classification results. At
the threshold that is optimized for overall pixel classifica-



Figure 2. From left to right: Original (sub)image, inverted for better visibility of calcium; annotated aorta with constructed calcium
probability map; calcium probability map from 100 random samples of the aorta conditional shape model; calcium probability map after
10 iterations of the joint optimization.

tion accuracy within the ROI, standard pixel classification
misses many of the true positives and finds some false pos-
itives outside the aorta. Shape particle guided classification
will normally produce positives only inside the aorta even at
high threshold values, thus allowing for a higher sensitivity
at the same specificity.

6. Conclusion

We propose an iterative, stochastic optimization algo-
rithm that simultaneously and robustly optimizes a pixel la-
beling and an underlying shape distribution. This method
could be used to incorporate high-level spatial information
in pixel classification tasks.

The method is demonstrated, in connection with a model
of aorta shape conditioned on the spine, on detecting calci-
fications in X-ray images of the aorta. Results of pixel clas-
sification without spatial prior were improved significantly.
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