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Abstract

A model-based approach to interactive segmentation of abdominal aortic aneurysms from CTA data is presented. After manual

delineation of the aneurysm sac in the first slice, the method automatically detects the contour in subsequent slices, using the result

from the previous slice as a reference. If an obtained contour is not sufficiently accurate, the user can intervene and provide an

additional manual reference contour.

The method is inspired by the active shape model (ASM) segmentation scheme (Cootes et al., 1995), in which a statistical shape

model, derived from corresponding landmark points in manually labeled training images, is fitted to the image in an iterative

manner. In our method, a shape model of the contours in two adjacent image slices is progressively fitted to the entire volume. The

contour obtained in one slice thus constrains the possible shapes in the next slice. The optimal fit is determined on the basis of multi-

resolution gray level models constructed from gray value patches sampled around each landmark. We propose to use the similarity

of adjacent image slices for this gray level model, and compare these to single-slice features that are more generally used with ASM.

The performance of various image features is evaluated in leave-one-out experiments on 23 data sets.

Features that use the similarity of adjacent image slices outperform measures based on single-slice features in all cases. The

average number of slices in our datasets is 51, while on average eight manual initializations are required, which decreases operator

segmentation time by a factor of 6.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

An abdominal aortic aneurysm (AAA) is an en-

largement of the abdominal aorta, resulting from

weakened arterial walls. Once present, AAAs continue

to enlarge and become increasingly susceptible to rup-

ture, which usually results in death. Because of the risks

associated with surgical AAA treatment, patients with a
small AAA are often placed under frequent surveillance

until the aneurysm becomes symptomatic or its diameter

exceeds 5.5 cm. Worldwide, approximately 100,000

surgical interventions for AAA repair are performed

each year, of which at present 30% are endovascular.
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After endovascular aneurysm repair, in which a syn-

thetic graft is placed inside the aorta, the process of

aneurysm shrinkage, ongoing aneurysmal disease, and

damage or fatigue of graft material may result in leak-

age, graft migration, and kinking or buckling of the

graft, which can subsequently cause rupture or occlu-

sion. Careful and frequent patient follow-up will likely

be needed for the life of the patient after endovascular
aneurysm treatment (Fillinger, 1999).

It has been demonstrated that change of aneurysm

volume is a good indicator for the risk of aneurysm

rupture (Czermak et al., 2001; Pollock et al., 2002;

Wever et al., 2000b). Currently, the gold standard for

volume assessment is computed tomography angiogra-

phy (CTA) with subsequent manual aneurysm delin-

eation (Balm et al., 1996). The manual segmentation is
a time-consuming process – it takes an experienced
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operator around 30 min – and suffers from inter- and

intra-operator variations. Wever et al. (2000a) reported

averaged inter-operator volume errors of 8.3% and intra-

operator errors, for two operators, of 3.2% and 5.8%.

To reduce analysis time and to increase reproduc-
ibility, automated segmentation would be of great value.

However, AAA segmentation in CTA images is a diffi-

cult task, and automatic methods are not available. The

boundary can be obscured by surrounding tissue of

similar gray value, many neighboring structures induce

strong edges in close proximity to the aneurysm wall,

and the variable aneurysm radius in combination with

partial volume effects makes the boundary hard to dis-
tinguish even in the absence of neighboring structures.

In addition, the size and appearance of aneurysms and

neighboring structures vary considerably between pa-

tients as well as in one patient over time. Fig. 1 shows

some examples of CTA slices, illustrating the diversity of

aneurysm and background appearance.

Most publications on computerized AAA segmenta-

tion have concentrated on lumen segmentation, either in
pre-operative (Bulpitt and Berry, 1998; Fiebich et al.,

1997; Giachetti et al., 2002; Magee et al., 2001; Pohle and

Toennies, 2001; Rubin et al., 1998; Tek et al., 2001;Weese

et al., 2001; Wink et al., 2000) or in post-operative CTA

scans (de Bruijne et al., 2003). The more difficult problem

of segmenting the aneurysm sac has less frequently been

addressed. Wilson et al. (1999) claimed successful aneu-

rysm sac segmentation using an active surface with the
central lumen axis as a seed, but did not present an eval-

uation study. Subasic et al. (2002) segmented the aortic

lumen using a three-dimensional level-set approach, but

found that the method could not cope with the large re-

gions lacking boundary evidence in delineating the

thrombus. They solved this problem using a combination

of thresholding, edge detection, morphological opera-

tions, and shape restrictions in the formof a distancemap,
favoring convex cross-sections. A level-set was evolved in

the resulting binary image to ensure a smooth object. The

average segmentation error per slice was 19.8%, which

makes the method suitable for visualization purposes but

not for accurate volume measurements.
Fig. 1. Four CTA slices of different patients, with manually delineated aneu

erative. The interior of the contour contains thrombus, contrast enhanced b

operatively – metal graft markers and attachment systems. Neighboring str

images in this paper have been contrast stretched for better visibility of the
We present and evaluate an interactive method for

aneurysm sac segmentation. After manual segmentation

of the first slice, the method automatically detects the

contour in subsequent slices, using the result from pre-

vious slices as a reference. If an obtained contour is not
correct, the user can intervene and provide an additional

manual reference contour. The method relies on the

fitting of a shape model to points with high correlation

with the reference contour.

The method is inspired by the Active Shape Model

(ASM) segmentation scheme as put forward by Cootes

et al. (1995, 2002), which combines statistical knowledge

of object shape and shape variation with local appear-
ance models near object contours. ASMs have been

successfully applied to various segmentation tasks in

medical imaging (Behiels et al., 2002; Cootes et al., 1994;

Duta and Sonka, 1998; Hamarneh and Gustavsson,

2000; Hill et al., 1993; Mitchell et al., 2001; Solloway et

al., 1997; van Ginneken et al., 2002). Applications in

three-dimensional images have either used a full three-

dimensional model (Hill et al., 1993; Kohnen et al.,
2002; Paulsen et al., 2002) or a two-dimensional model

applied to image slices (Cootes et al., 1994; Mitchell et

al., 2001). We have chosen a slice-by-slice approach,

which has the advantage that it is easily integrated with

the current manual segmentation scheme. Moreover, the

high anisotropy of the CTA data makes in-slice gray

value models more appropriate, and a three-dimensional

model would require resampling to an equal number of
slices for all aneurysms, while in our datasets an aneu-

rysm is between 30 and 65 slices long.

Mitchell et al. (2001) proposed the use of a two-di-

mensional hybrid active shape model/active appearance

model, fitted to several cardiac MR image slices inde-

pendently. Cootes et al. (1994) reported successful slice-

by-slice ASM segmentation of the ventricles in 3D MR

datasets, using the fitted shape in one slice as the ini-
tialization in the next slice. We extend this scheme by

modeling two successive image slices together. The

shape obtained in the previous slice is not only used as

an initialization but constrains the shape in the next

slice, resulting in a segmentation where the transition
rysms. The left image is taken before surgery, the others are post-op-

lood in the lumen and possibly in endoleaks, calcification, and – post-

uctures are the spinal column, blood vessels and intestines. All CTA

thrombus.
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between slices is in accordance with the shapes in the

training set.

Conventional ASMs use a linear model generated

from gray value patches in training images to fit the

shape model to the image. AAAs have such a diverse
range of possible surrounding structures, which vary in

location, shape, intensity and texture, that a linear

model of gray level structure about the contours may

not be able to find the true contour in a new image. An

important indicator for the image structure in one image

slice is the structure in the adjacent slices. We propose a

modified ASM scheme in which optimal landmark po-

sitions are defined by maximum gray value correlation
with adjacent slices rather than by correlation with the

training data. In this study, several similarity measures

are evaluated and compared to features that were shown

to perform well in combination with ASMs (Behiels et

al., 2002; Cootes and Taylor, 2002).

The shape model is briefly discussed in Section 2.1.

Section 2.2 presents various features for aneurysm

boundary localization, and Section 2.3 explains how the
shape model is fitted to the image using these features.

Section 3 describes a series of leave-one-out experiments

on 23 datasets. Several robustness tests are presented in

Sections 3.4 and 3.5. The performance of the interactive

procedure is measured by the required amount of user

interaction in a simulated interactive segmentation

scheme, as presented in Section 3.6. Discussion and

conclusions are given in Sections 4 and 5.
2. Methods

This section describes the segmentation scheme.

Shape variations in the training set are described using a

Point Distribution Model (PDM) (Cootes et al., 1992).

The shape model is used to generate new shapes, similar
to those found in the training set, which are fitted to the

data using a model of local gray value structure.

2.1. Point distribution models

In PDMs, a statistical model of object shape and

shape variation is derived from a set of s training ex-

amples. Each training example is described by a shape
vector x containing the coordinates of n landmark

points that correspond between shapes. Variations in the

coordinates of these landmark points describe the vari-

ation in shape and pose across the training set.

To maximize the specificity of the model, the shapes

can be aligned by rotation, translation and scaling, thus

reducing non-linearities in the shape distribution.

However, any relation between the object�s shape and its
pose or scale is then lost. Alternatively, one could align

the shapes using only translation and rotation and

construct a so-called size-and-shape model, in order to
retain the relationship between shape and scale while

removing the pose.

Principal component analysis (PCA) is applied to the

(aligned) shape vectors. To this end, the mean shape x,

the covariance matrix S, and the eigensystem of S are
computed. The eigenvectors /i of S provide the modes

of shape variation present in the data. The eigenvectors

corresponding to the largest eigenvalues ki account for
the largest variation; a small number of modes usually

explains most of the variation. Each shape x in the set

can then be approximated by

x � xþUb; ð1Þ
where U consists of the eigenvectors corresponding to

the t largest eigenvalues, U ¼ ð/1j/2j . . . j/tÞ, and b is

the model parameter vector that weighs the contribution

of each of the modes.

The total variance in the dataset is given by
P

ki. The
number t of modes in the model is often chosen such

that the model captures a certain proportion fv of the
total variance observed:

Xt

i¼1

ki P fv
X2n
i¼1

ki: ð2Þ
2.2. Gray value model

A rectangular gray value patch of kn � kt pixels is
sampled symmetrically around each landmark, with the

length kn normal to the contour and the width kt tan-
gential to the contour. The patches are sampled at

multiple resolutions, to enable coarse-to-fine fitting of

the model. The finest resolution uses the original image

and a sample spacing of 1 voxel, the next resolution is

the image convolved with a Gaussian kernel of width

one and sampled with a spacing of 2 voxels, and sub-
sequent resolutions are obtained by doubling both the

kernel width and the sample spacing.

For a successful segmentation procedure, the ability

of an image feature to distinguish between correct and

false boundary positions is crucial. We evaluate the

performance of the following features.

2.2.1. Edges

An object edge likely corresponds to image positions

with a strong intensity gradient. We applied the gradient

magnitude in the direction normal to the contour, GM.

2.2.2. Linear model of training data

The boundary appearance can be learned from a

training set. In the original ASM formulation, Cootes

and Taylor (2002) use the Mahalanobis distance from
the sampled gray value patch gs to the mean of training

patches g as a boundary measure:

MAHðgsÞ ¼ ðgs � gÞTS�1
g ðgs � gÞ: ð3Þ
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The effect of global intensity changes can be reduced

by sampling the first derivative and normalizing the

patch. We have applied MAH to intensity (I) and first

order derivative (I 0) patches, and the normalized ver-

sions thereof. The patches are normalized such that the
sum of the absolute intensity values equals 1.

2.2.3. Linear model of training data combined with slice

similarity

The linear model of training patches that is used in

ASM can be combined with information from adjacent

slices. The Mahalanobis distance from the sample patch

gs to the reference patch gr expresses the difference be-
tween the two patches, taking the covariance across the

training set into account:

MAHRðgsÞ ¼ ðgs � grÞ
T
S�1
g ðgs � grÞ: ð4Þ

The reference patch is sampled at the corresponding

landmark in the adjacent slice. In the experiments,

MAHR is applied to (normalized) intensity and first

order derivative patches.

2.2.4. Slice similarity

Several features based only on similarity between

adjacent slices are considered:

• Sum of squares of intensity differences between sam-

ple and reference

SD ¼
Xkn�kt

x¼0

ðIsðxÞ � IrðxÞÞ2; ð5Þ

where Is is the image intensity in the sample patch and

Ir the intensity in the reference patch.

• Sum of absolute intensity differences between sample
and reference

AD ¼
Xkn�kt

x¼0

jIsðxÞ � IrðxÞj: ð6Þ

• Normalised cross-correlation between sample and

reference

NCC ¼
Pkn�kt

x¼0 IsðxÞ � IrðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPkn�kt
x¼0 IsðxÞ2 �

Pkn�kt
x¼0 IrðxÞ2

q : ð7Þ

• Correlation coefficient between sample and reference

CC ¼
Pkn�kt

x¼0 ðIsðxÞ � IsÞ � ðIrðxÞ � IrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPkn�kt
x¼0 ðIsðxÞ � IsÞ2 �

Pkn�kt
x¼0 ðIrðxÞ � IrÞ2

q : ð8Þ

All slice similarity features are tested on raw intensity

patches.

GM, NCC and CC are maximized, all other measures

are minimized.

2.3. Fitting procedure

Starting with one manually drawn contour, the seg-

mentation proceeds through the dataset, fitting the two-
slice model to all pairs of adjacent slices. Each time the

result from the previous slice is used as a reference for

determining the contour in the new slice. From coarse to

fine resolution, the model is fitted to a pair of slices in an

iterative procedure. The process initializes with the
shape from the reference slice, in both slices. For all

landmarks in the new slice, ns possible new positions are

evaluated along the line perpendicular to the contour,

on both sides. The distance between the positions to

evaluate depends on the level of resolution and is equal

to the sample spacing of the corresponding gray level

model: at the finest resolution the distance is 1 voxel, at

each subsequent resolution it is doubled. The optimal
new position is determined by one of the features that

were introduced in the previous section. The shape

model parameters b that minimize the squared distance

between the landmarks and the optimal positions are

computed using

b ¼ UTðx� xÞ: ð9Þ
Hard limits are applied to constrain b to plausible

values:

jbij6 fc
ffiffiffiffi
ki

p
; ð10Þ

in which the parameter fc is typically chosen between 2
and 3. The landmarks of the new slice are moved to their

new positions according to the model parameters, while

the landmarks in the reference slice are kept fixed. This

process is repeated a fixed number of N times, where-

upon it is repeated at the next level of resolution.
3. Experiments

A series of leave-one-out experiments is performed on

23 CTA images.

3.1. Data

All experiments are carried out on 23 routinely ac-

quired CTA images from 23 different patients. Of these,
2 are pre-operative scans and all others are taken after

endovascular stenting, 9 directly after surgery and 12 at

follow-up ranging from 1 to 12 months. The scan res-

olution is 0.488� 0.488� 2.0 mm. Each image consists

of circa 125 slices of 512� 512 voxels, of which 34–63

slices contain aneurysmal tissue. The total number of

slices to be segmented is 1175.

3.2. Landmarking and alignment

A PDM is built of all pairs of adjacent slices. The

original CT-slices, which are perpendicular to the body

axis and therefore always give approximately perpen-

dicular cross-sectional views of the aorta, are used.

Contours are drawn manually by an expert between the
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first and last slice in which thrombus is visible. In the

absence of well-defined anatomical landmark points,

landmarks are equidistantly placed along the object

contours. The starting point of a contour is the poster-

ior point with the same x-coordinate as the center of
mass.

If the relation between position, size, orientation and

shape is not important, the shapes can be aligned with

respect to these transformations prior to model con-

struction, in order to increase specificity and compact-

ness of the model. To make the model even more

compact, the slices could be aligned separately so that

translation, rotation and scaling of a shape with respect
to its reference is removed from the model. However, we

keep the transformations from slice to slice in the model,

as there is a correlation between these transformations

and the shape. For instance, contours in the top and

bottom of the aneurysm, where the largest size changes

between slices occur, are usually more elliptic than in the

rest of the aneurysm.

To investigate the relations between size, orientation,
and shape, the shapes are aligned using Procrustes

analysis and a new PDM is constructed. Fig. 2 shows

scatter plots of the first principal components versus the

scale and the rotation angle. We find no evidence of a
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Fig. 2. Relation between the first six modes of shape variation of an aligned

rotation angle.
relation between shape and size, but there is a clear

correlation between the second mode of variation and

the orientation. In the remainder, the shapes are aligned

only by translation, such that the centers of the reference

contours coincide.
Fig. 3 shows the distribution of shape vectors by

pairwise scatter plots of the first 10 principal compo-

nents. From this, the assumption that all shapes that lie

within a box of 2:5
ffiffiffi
k

p
i are valid model instances seems

reasonable.

Fig. 4 shows the first eight modes of shape variation

of the two-slice model trained with all 23 datasets. The

largest variation in the shapes in the training set, the first
mode, is a size difference. The second and third mode

show that a strong elongation in x direction is correlated

with a slightly larger upper contour, while an elongation

in the y direction corresponds to a smaller upper con-

tour. These are the types of shapes that are found in the

bottom and the top of the aneurysm. The next mode

describes a less pronounced deviation from the mean

shape, where both slices deviate in the same way. Only
from the fifth mode, a larger difference between the two

adjacent slices is observed, with first a shape difference,

then translations in the x and y directions, followed by a

difference in size.
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Fig. 4. The effect of varying each of the first eight shape parameters

individually in a two-slice model built from all 23 datasets. The con-

tinuous contour denotes the lower slice, the dotted contour the upper

slice.

Table 1

Parameters of the segmentation scheme

Shape model (Section 2.1)

n 50 Number of landmark poin

fv 0.99 Part of shape variance to b

fc 2.5 Bound on eigenvalues ki (

Gray value model (Section 2.2)

kn 7 Patch length

kt 1 Patch width

Fitting algorithm (Section 2.3)

ns 2 Number of new landmark

L 3 Number of resolution leve

N 5 Number of iterations per r
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3.3. Parameter settings

Table 1 lists the parameter values that are used in all

experiments, unless mentioned otherwise. Since the

shapes are not size normalized, the proportion of the
variance to retain in the model, fv, is chosen relatively

large (0.99).

3.4. Shape model evaluation

The amount of variance explained by the model is

plotted as a function of the number of modes in Fig. 5.

Over 99% of the total amount of variation present in the
training set is described by the first 11 modes.

The validity of the shape model and the applied

constraints are tested by fitting the model directly to the

contours that were manually drawn, which gives an

upper bound for the accuracy that can be obtained when

the model is fitted to new image data. Fig. 6 shows the
ts per slice

e explained by the model, controlling the number of modes t (Eq. (2))
Eq. (10))

positions to examine per iteration on either side of the current position

ls

esolution level
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1
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f v

Fig. 5. The amount of variance explained by the model as a function of

the number of modes contained in the model.
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root mean squared error in millimeters as a function of
the number of modes retained. The averaged leave-one-

out reconstruction error, where a model built of 22

training shapes is fitted to the remaining shape, almost

coincides with the reconstruction error for a model built

of all 23 shapes, indicating that sufficient training data

are available to represent all shapes.

3.5. Feature evaluation

The following experiments compare boundary local-

ization performance of the different features that were

introduced in Section 2.2. First, feature performance is

evaluated independent of the rest of the segmentation

process. Starting from the landmarks on the manually

drawn contour, the optimal landmark positions ac-

cording to the feature are determined, for varying ns.
The distances from these points to the landmark posi-

tions provided by the manual tracings are measured.

The resulting root mean squared distances as a function

of the size of the search region are shown in Fig. 7.

Features using patches of length kn ¼ 7 and width kt ¼ 1

and 5, with a sample spacing of 1 or 4 voxels, are con-

sidered. Initial experiments revealed that smaller errors

are obtained with the Mahalanobis distance based
measures when the patches are normalized. For the sake

of clarity of the graph, we here only show the results on

normalized intensity and derivative patches, but the final

results on non-normalized patches are given in Section

3.6 for comparison. The dashed black line starting at the

origin corresponds to the expectation for random

landmark selection.

At a small scale and in a small search region, all
features perform similarly, but at larger scale or in a

larger region the errors obtained using slice similarity

measures are much smaller than those obtained using
the gradient magnitude or the linear statistical model.

Both Mahalanobis distance based features perform

much better on derivative than on intensity patches. The

Mahalanobis distance to the average intensity patch is

even worse than random landmark selection. Among the
slice similarity features, AD and SD yield better results

than NCC and CC. The robustness of the slice similarity

features increases with increasing scale, while the ro-

bustness of the Mahalanobis distance and gradient

measures decreases. The same holds for enlarging the

patch width.

The segmentation process is less sensitive to random

outliers than to several neighboring landmarks that are
consistently placed at a wrong position, which can be

the case when a neighboring structure produces mis-

leading boundary evidence. The result of fitting the

shape model to the optimal points of the previous test is

given in Fig. 8. The minimum error has increased, since

it cannot be smaller than the reconstruction error from

Fig. 6, and all maximum errors have decreased. Again,

both Mahalanobis distance based features perform
better on derivative than on intensity patches. The

Mahalanobis distance to the reference patch gives errors

similar to those obtained using the other slice similarity

measures. GM is one of the best features if the search

regions is within 3 voxels of the true contour, but errors

quickly increase with larger search areas. At the lowest

resolution, NCC and CC perform better than AD and

SD, but at higher resolutions AD gives the smallest er-
rors. Enlarging the patch width does not increase the

robustness for the slice similarity measures as was the

case before fitting the shape model, and robustness de-

creases for all Mahalanobis distance based measures. In

the subsequent experiments we use kt ¼ 1.

3.6. Simulated interactive segmentation

To evaluate all features evenly in an interactive seg-

mentation setting, we simulated observer interaction

using manually segmented datasets. Starting with the

bottom contour of the manual segmentation as a refer-

ence, successive slices are segmented. After each seg-

mented contour, the similarity to the manually drawn

shape is computed. If the similarity is sufficient, the

segmentation proceeds, otherwise, a new contour from
the available manual segmentation is added, so as to

simulate operator intervention. The performance is

measured by the number of manual initializations nee-

ded to segment an entire volume.

The similarity of the two contours is described in

terms of the distance from each landmark to the contour

drawn manually. Since the main clinical objective of

AAA segmentation is volume measurement, the mean
signed distance, which is proportional to the error in the

measured area in a slice, should be small (1 mm in our

experiments). To ensure similarly shaped and positioned
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Fig. 7. Root mean squared error of optimal landmark position detection as a function of the number of points evaluated on either side of the contour,

for (a) a patch of 7� 1 voxels, sampled at scale 0; (b) a patch of 7� 5 voxels, sampled at scale 0; (c) a patch of 7� 1 voxels, sampled at scale 2; (d) a

patch of 7� 5 voxels, sampled at scale 2. The units are step sizes in the position evaluation procedure, i.e. 1 voxel (0.488 mm) for the profiles sampled

at scale 0 and 4 voxels at scale 2.
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contours the mean and maximum absolute distance are

constrained as well, to 2 and 4 mm, respectively. Four

randomly chosen examples of segmentations fulfilling
these requirements are shown in Fig. 9.

Fig. 10 shows, for each feature and each dataset, the

average number of slices that was correctly segmented

using one initialization. Table 2 lists these results aver-

aged over all datasets. In all cases, the smallest number

of interactions was needed when one of the slice simi-

larity measures was used. The average number of au-

tomatically obtained contours was largest when using
AD, but the difference with SD was not significant

(p ¼ 0:75 in a paired t-test). Both AD and SD performed

significantly better than all other tested features

(p ¼ 0:06 as compared to CC, p < 0:00001 for all other

features). If MAHR was used, thus combining the in-

formation from the reference slice with the statistical
model, more user interactions were needed, and using

only the model (MAH) again increased the number of

interactions (p ¼ 0:003). Overall, Mahalanobis distance
based measures perform best on normalized first order

derivative patches. A segmentation process based on

MAHðI 0Þ on normalized patches needs less re-initial-

izations than one based on GM (p ¼ 0:011).

3.7. Expert supervised interactive segmentation

In the simulated experiments the manual tracings are
used as the undisputed gold standard. However, inter-

observer errors in aneurysm volume measurements are as

high as 8.3% (Wever et al., 2000a). In case of clear image

evidence the automatic segmentation should indeed be

similar to the manual contour, but when no boundary is

visible the criteria of Section 3.6 may be relaxed.
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Fig. 9. Examples of accepted segmentations. The continuous line depicts the contour that was obtained automatically; the dotted line is the manual

segmentation.
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To get an idea of the true number of interactions that

will be needed for segmentation, segmentation with

feature AD was repeated, but this time a human ob-
server decided whether re-initialization was needed. This

resulted in a smaller number of interactions, especially

in the top and bottom part of the aneurysm where the
boundary is hard to distinguish owing to partial volume

effects. The number of interactions used is given in

Fig. 10 and Table 2. This number may still be an over-
estimation of the true number of interactions required,

since the observer assesses segmentations that are based

on reference contours drawn by another observer.
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Table 2

Average number of correct contours obtained using one initialization

Normalized

GM 1.82

MAH(I) 1.32 1.16

MAH(I 0) 1.11 2.25

MAHR(I) 2.86 2.96

MAHR(I 0) 2.61 3.23

AD 4.76

SD 4.72

CC 4.24

NCC 3.59

AD, Supervised 6.39
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The resulting segmentations had an average volume

overlap of 95.8% (minimum 93.0%) with the manual

segmentation. The average relative volume difference is

1.5% (maximum 3.9%), well below the 3.5% average
intra-observer relative volume difference that was mea-

sured in a study on comparable datasets (Wever et al.,

2000a).
4. Discussion

The presented method uses a shape model from two
adjacent slices for segmenting a three-dimensional

structure, while a full three-dimensional approach – al-

lowing gray value modeling perpendicular to the object�s
surface – could be more appropriate in some applica-

tions. In the case of CTA images, which are in general

highly anisotropic (in our images the voxels are over

four times larger in the z-direction), we do not expect a

significant improvement in boundary localization if the
profiles would be sampled in three dimensions. An ad-

vantage of the two-slice approach is that it can easily be
integrated in the current clinical practice of manual

slice-by-slice segmentation. The use of a three-dimen-

sional model would require a much larger number of

training shapes, and all datasets would have to be de-

scribed by an equal number of landmarks. The latter is
not desirable for objects that can vary largely in length.

Moreover, the use of slice similarity features in combi-

nation with the current ASM optimization scheme

would be computationally infeasible for a model con-

sisting of a large number of slices. Performance of the

presented method may be improved, whilst avoiding the

drawbacks of a complete three-dimensional approach,

by adding one or more extra slices to the model.
It was shown that the original ASM scheme that uses

local intensity models does not perform well in AAA

segmentation. One of the shortcomings of the gray value

model that is used in ASMs is that only the appearance

of the correct boundary is learned from the training set,

wherefore it cannot distinguish the true contour from

other contours with similar gray values. Another prob-

lem is the underlying assumption of a normal intensity
distribution. In the presence of distinct background

structures of varying shape and brightness this as-

sumption does not hold. The use of a non-linear gray

value model may be more suitable. In this work we ef-

fectively solved this problem by using gray value patches

from the reference slice.

A consequence of using slice similarity measures is

that errors propagate through the dataset and therefore
performance deteriorates with distance from the refer-

ence contour. We previously showed that a refinement

step, in which the model is allowed to adjust to nearby

edges, can increase contour tracking robustness (de

Bruijne et al., 2002) in the middle part of the aneurysm.

However, the model can then also fit to wrong edges.

Fig. 8 shows that the errors quickly become large when

fitting on edge strength. In segmentation of the entire
aneurysm, including the more difficult top and bottom

part, we have not observed a significant improvement

when such a refinement was applied.

The proposed method could obtain accurate seg-

mentations while only in one of six slices manual in-

tervention is needed. Currently, the user must redraw

the entire contour, but more sophisticated methods of

user interaction can easily be incorporated. Since errors
often occur at a small part of the contour while the

larger part is correct, dragging one landmark point to

the correct boundary and iteratively fitting the model to

this point may be sufficient to obtain a correct contour

(van Ginneken et al., 2003).

We have evaluated the application of this method to

AAA segmentation, but the idea of propagating a two-

slice shape model based on slice similarity measures can
be used in other areas as well. Especially time-sequences

and anisotropic medical images form a promising ap-

plication. The dependency on image slicing and orien-
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tation restricts the applicability to segmentation tasks

where the shape change between slices is not too large

and the object is always imaged in approximately the

same direction. However, many medical images are ac-

quired with fixed scan protocols which satisfy these
conditions. In case the object axis is known, for instance

through a – more easily automated – vessel lumen seg-

mentation (Bulpitt and Berry, 1998; de Bruijne et al.,

2003; Fiebich et al., 1997; Giachetti et al., 2002; Magee

et al., 2001; Pohle and Toennies, 2001; Subasic et al.,

2002; Tek et al., 2001; Weese et al., 2001; Wilson et al.,

1999; Wink et al., 2000), or by manual definition, the

proposed method could also be used for segmentation in
reformatted slices orthogonal to that axis.
5. Conclusions

A new approach to the semi-automatic delineation of

abdominal aortic aneurysms, based on shape model

fitting in sequential slices, is reported. In a simulated
interactive segmentation process, the benefit of using

slice correlation in shape model fitting was demon-

strated. The best performing features for aneurysm

boundary localization are the absolute and squared

difference with a reference image (AD and SD). Using a

segmentation process steered by slice correlation, on

average 3.76 slices could be segmented following one

manual initialization, with mean signed error less than 1
mm, mean absolute error less than 2 mm and maximum

absolute error at most 4 mm. An expert guided

segmentation experiment showed that the simulated in-

teraction slightly overestimates the number of re-

initializations required.

Using the proposed method and the optimal slice

correlation feature, the time required for expert seg-

mentation may be reduced by a factor of 6.
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