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ABSTRACT

Early diagnosis and treatment of patients at high risk of
developing fragility fractures is crucial in the management of
osteoporosis. In this paper we propose to estimate the risk of
future vertebral fractures using a training set of longitudinal
data to learn the shape characteristics of vertebrae and spines
that will sustain a fracture in the near future. A discriminant
classifier is trained to discriminate between subjects develop-
ing one or more vertebral fractures in the course of 5 years
and subjects maintaining a healthy spine. This approach is
compared to a one-class system where the classifier is trained
only on the subjects staying healthy. In a case-control study
with 218 subjects, all unfractured at baseline and matched for
main vertebral fracture risk factors such as spine BMD and
age, we were able to predict future fractures with a sensitivity
of 76% and a specificity of 72%.

Index Terms— shape analysis, discriminant analysis, dis-
ease prognosis, vertebral fracture, osteoporosis

1. INTRODUCTION

Much of the burden of osteoporosis can potentially be avoided
if individuals at risk of developing fragility fractures are iden-
tified and appropriate interventions (both preventive and ther-
apeutic) are made in a timely manner [1]. Assessment of frac-
ture risk is therefore receiving increasing attention [1, 2, 3, 4].

Previous studies indicated that irregularity in vertebral
alignment or spine curvature as can be observed on lateral
X-rays is associated with known risk factors for future frac-
tures such as prevalent fractures and low bone mineral density
(BMD) [5, 6], as well as with future fractures independent
of the main risk factors [7]. These studies based their analy-
sis on simple measures of vertebral heights or circles drawn
through vertebral body center points and aim at capturing the
known characteristics of deformed spines in the hope that
these measures may also be suited for early diagnosis and
prediction of future deformity.

We propose to learn explicitly the potentially complex
characteristics of shapes of spines that will and will not frac-
ture from a training set of X-ray images for which the fracture
status of the subject after a number of years is known.

2. SUPERVISED SHAPE ANALYSIS

A training set of longitudinal data of which it is known
whether a deformity developed in the next few years is sep-
arated in classes of spines staying normal and spines devel-
oping a fracture. The spine shapes are described by feature
vectorsx containing the coordinates of a set of landmark
points that correspond between different shape instances and
that are ‘interesting’ points, such as corner and boundary
points of the vertebral bodies. The collection of training
shapes is aligned using Procrustes analysis [8] to remove
position, orientation, and possibly also size variations.

We investigate two different approaches to determine for
a previously unseen spine shape a measure of deviation from
the ‘normal’, not fracturing, spines:

1. A linear discriminant approach, in which both classes
of spine shapes are modeled and the posterior probabil-
ity of the spine belonging to the class that will sustain
a fracture in the near future is used.

2. A one-class approach, in which only the spines staying
unfractured are modeled and the reconstruction error if
the spine is approximated by this model is used as the
measure of abnormality.

The two approaches are described in more detail in the fol-
lowing sections.

2.1. Linear Discriminant Analysis

A classifier can be written in terms of discriminant functions
di [9]. An object with feature vectorx is then assigned to the
class that corresponds to the largestdi(x). If we assume a
so-called 0-1 loss function — false positives and false nega-
tives are equally bad — the optimal discriminant function that
minimizes the risk associated with misclassifications is

di(x) = p(x|wi)P (wi).

That is, each object should be assigned the class that maxi-
mizes the posterior probability.

We will assume multivariate Gaussian distributionsp(x|wi)
for each of the classeswi and, to reduce the complexity of



the model and therewith the risk of overfitting to the data in
the case of a relatively small dataset, we assume that both
distributions have equal covariance. The resulting optimal
classifier is the linear discriminant classifier:

di(x) = lnP (wi) −
1

2
[(x − µi)

T Σ−1(x − µi)]

whereΣ is the pooled covariance matrix, i.e. the average co-
variance matrix weighted by the class prior probabilities,and
µi are the class means.

In the experiments in this paper we use a regularized lin-
ear discriminant classifier [10] and replaceΣ by Σ′:

Σ′ = (1 − α)Σ + ασ2I, (1)

whereI is the identity matrix,σ2 is the mean variance, andα
a regularization parameter with0 ≤ α ≤ 1. Varyingα makes
the classifier vary between the non-regularized linear discrim-
inant classifier and the nearest mean classifier weighted by
the class prior probabilities. What is a suitable value forα

depends on the number of features and training samples and
on the distribution of the data; a good value can be selected
for instance using cross-fold validation on the training set.

2.2. One-class model

Similarly to the two-class case, the shapes for the one-class
model are assumed to be normally distributed. If the model is
trained on ‘normal’ shapes only, the Mahalanobis distance to
the mean shape can be seen as a measure of abnormality.

To reduce the effect of noise in landmark placement,
we follow the procedure of linear point distribution models
(PDM) [11] and apply a principal component analysis (PCA)
to the aligned shape vectors to model the shape probability
distribution in a subspace of reduced dimensionality. To this
end, the mean shapex, the covariance matrixΣ, and the
eigensystem ofΣ are computed. The eigenvectorsφi of Σ
provide the so-calledmodes of shape variationthat describe a
joint displacement of all landmarks. The eigenvectors corre-
sponding to the largest eigenvaluesλi account for the largest
variation; a small number of modes usually captures most of
the variation. Each shapex in the set can then be approxi-
mated by a linear combination of the mean shape and these
modes of variation:

x = x + Φtb + r

whereΦt consists of the eigenvectorsφ corresponding to the
t largest eigenvalues,Φt = (φ1|φ2| . . . |φt), b is a vector of
model parameters that specify the contribution of each of the
modes, andr is a vector of residual shape variation outside of
the model subspace.

As a measure of abnormality we now use the approxima-
tion error|r| when the observed shape is approximated by its
projection on the PCA subspace derived from the training set

of normal shapes. To ensure that the model describes only
plausible, normal shapes, the shape parameters of the pro-
jected shape are constrained according to

bi ≤ k
√

λi. (2)

3. EXPERIMENTS

3.1. Data

A case-control study was performed using X-rays from 218
post-menopausal women selected from a cohort of Danish
women that was followed for assessment of osteoporosis and
atherosclerosis in the Prospective Epidemiological Risk Fac-
tors (PERF) study [12]. Out of these 218 women, 109 main-
tained skeletal integrity whereas the other 109 developed one
or more vertebral fractures in the course of approximately five
years. None of the women received treatment for osteoporo-
sis and none experienced an osteoporotic fracture before the
baseline visit, including non-vertebral fractures. Casesand
controls were matched for age, follow-up time, BMD of the
lumbar spine, and weight.

Lateral X-rays of the lumbar and thoracic spine were ob-
tained at baseline and at follow-up. The X-rays were digitized
and analyzed by experienced radiologists. All vertebrae that
were visible in the images, i.e. L5 to L1, T12, or T11 in the
X-rays of the lumbar region, and from L1 or T12 to T4 in
the thoracic region, were annotated with at least one vertebra
overlapping in each pair of lumbar and thoracic images. The
annotations consisted of six points placed on the corners and
in the middle of the vertebra end plates, defining the ante-
rior, middle and posterior heights. The lumbar and thoracic
parts of the spine were combined by rigidly matching the
landmarks of the overlapping vertebra(e) and averaging the
doubly annotated landmarks. All landmark coordinates from
the six points on L5 to T4 were used as features in the classi-
fication. A few examples of observed spine shapes are given
in Fig. 1.a.

Fractures in the follow-up images were identified and
graded according to the Genant at al. method of semi-
quantitative visual assessment [13] in severity mild, mod-
erate, or severe. Fractures are indicated as mild if one of the
three heights is between 20% and 25% smaller than the max-
imum of the heights, moderate if the difference is between
25% and 40% and severe if the difference is larger than 40%.
A total of 156 fractures was found in 109 spines at follow
up. Of these, 106 were mild fractures, 39 moderate, and 11
severe. If these semi-quantitative scores are added up into
an overall spinal deformity index (SDI [4], sum of individual
vertebra scores with normal=0, mild fracture=1, moderate
fracture=2, severe fracture=3), 76 spines had SDI=1 (one
mild fracture), 25 had an SDI of 2 (one moderate or two mild
fractures), 6 had SDI≥3.



(a) (b)

Fig. 1. (a) Two randomly selected spine shapes from the
group maintaining skeletal integrity (left) and two from the
group developing a fracture within the next five years (right)
(b) Shape variation across the classification boundary: mean
spine shape (left), spine likely to fracture (middle) and spine
likely to stay intact (right).

3.2. Experimental set-up

A set of leave-one-out experiments was performed in which
the classifiers for each shape were trained on the remaining
217 shapes. For the one-class classification, only the group
maintaining skeletal health was used for training. Since the
size of the spine could carry important information on frac-
ture risk, the shapes are aligned using Procrustes alignment
with translation and rotation, without scaling. Discriminant
classifications are performed using the Matlab pattern recog-
nition toolboxprtools [14]. The regularized linear discrim-
inant classifier of Eq. (1) is used withα set to 0.1. For the
one-class model, the number of modes selected wast = 10
and shape parameters were constrained according to Eq. (2)
with k = 3. The selected values for parametersα, k, andt

maximize the area under the ROC curve (AROC).

3.3. Results

Fig. 1.b. illustrates the discriminating direction found by the
classifier. A spine shape (in this case the mean shape) was
deformed in the most discriminating direction, across the
decision boundary. The discriminating shape variation is a
complex combination of various changes; prominent features
seem to be an overall accentuation of the spinal curve and
slight enlargement of the intervertebral spaces in the lumbar
area.

The difference between the two groups at baseline is sig-
nificant with p = 6.0 × 10−5 in a Wilcoxon rank sum test.
Future fracturing of the spine is predicted with an accuracy
(percentage correct classification) of 0.67 and area under the
ROC curve (AROC) of 0.66. At a sensitivity of 76% frac-

Fig. 2. ROC curves for fracture prediction using discriminant
analysis, for the complete dataset (solid line) and for SDI≥2
versus SDI=0 (dotted).

tures were predicted with a specificity of 72%. If the same
classifier, trained on the same data, is applied to predicting
more severe deformity (SDI≥2) based on the baseline shape,
accuracy is 0.71, AROC 0.71,p = 2.0 × 10−6.

The one-class model, trained on the normal subjects only,
performs slightly worse with accuracy=0.56, AROC=0.63,
p = 5.9 × 10−4.

4. DISCUSSION

As expected, the one-class model, which measures only devi-
ation from normal spines without incorporating the examples
of spines at risk is less accurate in its prediction of futurefrac-
tures than the two-class, linear discriminant approach. How-
ever, it may in some cases be difficult to construct a reason-
ably sized training set of spines that are known to fracture,
and if this is the case the one-class model could be a viable
alternative.

The proposed methods relies on six landmark points
placed on each of the vertebrae, for which we in this paper
used manual annotations by radiologists. Although this is
common practice in current quantitative morphometry stud-
ies, manual annotation is of course time consuming and
might hamper large-scale use of these methods. Several
authors have previously proposed methods for automatic
and semi-automatic spine segmentation from X-ray or dual
X-ray absorptiometry (DXA) images which might be used
instead [15, 16, 17].

One shortcoming of the current six-point representation
may be that osteophytes and more subtle vertebral shape vari-
ations can not be captured. In vertebral fracture classification,
use of a full contour representation seems to give a slight im-
provement with respect to conventional height measurements
[15, 18], and we would expect a similar improvement if a
full contour annotation could be used in the supervised shape



analysis.
Finally, since vertebral fractures often develop without

clear symptoms, the time point at which the subjects in this
study experienced the first fracture is unknown. More exper-
iments on data with varying follow-up time would therefore
be required to find out the time scale at which prediction is
possible.

5. CONCLUSIONS

We propose to use supervised learning techniques in a longi-
tudinal setting to aid in disease prognosis, and have applied
this to estimating spine fracture risk from the shape observed
in lateral X-rays. The results in this paper suggest that both
a discriminant analysis and a one-class approach can detect
variations in spine shape that contribute to the risk of future
vertebral fractures, independent of important risk factors such
as age, spine BMD, and prevalent fractures. Supervised spine
shape analysis may form a valuable addition to current verte-
bral risk assessment strategies.

6. REFERENCES

[1] Department of Health and Human Services, Rockville:
US Department of Health and Human Services, Offi ce
of the Surgeon General, 2004,Bone health and osteo-
porosis: a report of the Surgeon-General, 2004.

[2] J.A. Kanis, F. Borgstrom, C. De Laet, H. Johans-
son, O. Johnell, B. Jonsson, A. Oden, N. Zethraeus,
B. Pfleger, and N. Khaltaev, “Assessment of fracture
risk.,” Osteoporos Int, vol. 16, no. 6, pp. 581–589, 2005.

[3] M.H. Huang, E. Barrett-Connor, G.A. Greendale, and
D.M. Kado, “Hyperkyphotic posture and risk of future
osteoporotic fractures: The Rancho Bernado study,”J
Bone Miner Res, vol. 3, pp. 419–423, 2006.

[4] G.G. Crans, H.K. Genant, and J.H. Krege, “Prognos-
tic utility of a semiquantitative spinal deformity index,”
Bone, vol. 37, no. 2, pp. 175–179, 2005.

[5] R.M.D Zebaze, R.M.Z Djoumessi, G. Maalouf,
N. Maalouf, and E. Seeman, “Loss of regularity in
the curvature of the thoracolumbar spine: a measure of
structural failure,”J Bone Miner Res, vol. 19, no. 7, pp.
1099–1104, 2004.

[6] B. Cortet, E. Roches, R. Logier, E. Houvenagel,
G. Gaydier-Souquires, F. Puisieux, and B. Delcambre,
“Evaluation of spinal curvatures after a recent osteo-
porotic vertebral fracture,”Joint Bone Spine, vol. 69,
no. 2, pp. 201–208, 2002.

[7] P.C. Pettersen, M. de Bruijne, J. Chen, Q. He, C. Chris-
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