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ABSTRACT 2. SUPERVISED SHAPE ANALYSIS

Earl)_/ dlagn(_)§|s and treat_ment (.)f p_atlentS at high risk OTA training set of longitudinal data of which it is known
developing fragility fractures is crucial in the managetnah

osteoporosis. In this paper we propose to estimate the fisk (\Svhether a deformity developed in the next few years is sep-

) o N arated in classes of spines staying normal and spines devel-
future vertebral fractures using a training set of longitad : ) X
. oping a fracture. The spine shapes are described by feature

data to learn the shape characteristics of vertebrae andsspi " X
. . ; - vectorsx containing the coordinates of a set of landmark
that will sustain a fracture in the near future. A discrimiha . . .
points that correspond between different shape instamzks a

classifier is trained to discriminate between subjectsldeve p R
) . that are ‘interesting’ points, such as corner and boundary
ing one or more vertebral fractures in the course of 5 years

and subjects maintaining a healthy spine. This approach %rc:mts OT thg vertebra}l bodies. The coIIect_|0n of training
e . Shapes is aligned using Procrustes analysis [8] to remove

compared to a one-class system where the classifier isdraing """ . . ; . L

only on the subjects staying healthy. In a case-controlystudpos'tlon’ orler_1tat|on, ano! possibly also size varlatlons._

with 218 subjects, all unfractured at baseline and matcheed f We_ Investigate two c_zhfferent approaches to dete_rm_me for

main vertebral fracture risk factors such as spine BMD an previously unseen spine shgpe ameasure of deviation from

. ! ...~ the ‘normal’, not fracturing, spines:

age, we were able to predict future fractures with a seiitsitiv

of 76% and a specificity of 72%. 1. A linear discriminant approach, in which both classes

of spine shapes are modeled and the posterior probabil-

ity of the spine belonging to the class that will sustain

a fracture in the near future is used.

I ndex Terms— shape analysis, discriminant analysis, dis-
ease prognosis, vertebral fracture, osteoporosis

1. INTRODUCTION 2. A one-class approach, in which only the spines staying

unfractured are modeled and the reconstruction error if

Much of the burden of osteoporosis can potentially be awbide the spine is approximated by this model is used as the
if individuals at risk of developing fragility fractureseaiden- measure of abnormality.

tified and appropriate interventions (both preventive ded-t ) ) o
apeutic) are made in a timely manner [1]. Assessment of fraclh® two approaches are described in more detail in the fol-
ture risk is therefore receiving increasing attention [13,24].  lowing sections.
Previous studies indicated that irregularity in vertebral
alignment or spine curvature as can be observed on laterdll. Linear Discriminant Analysis

X-rays is associated with known risk factors for future frac e : . L .
tures such as prevalent fractures and low bone mineralnyensfo‘ classifier can be written in terms of discriminant funcgon
d; [9]. An object with feature vectax is then assigned to the

(BMD) [5, 6], as well as with future fractures independent
L : . class that corresponds to the largégtx). If we assume a
of the main risk factors [7]. These studies based their analy . C
) . : . so-called 0-1 loss function — false positives and false nega
sis on simple measures of vertebral heights or circles drawp : SO .
) . : ives are equally bad — the optimal discriminant functioaitth
through vertebral body center points and aim at capturiag th_ "> d . : . e :
- . ; inimizes the risk associated with misclassifications is
known characteristics of deformed spines in the hope that'
thesg measures may alsq be suited for early diagnosis and di(x) = p(x|w;) P(w;).
prediction of future deformity.
We propose to learn explicitly the potentially complex That is, each object should be assigned the class that maxi-
characteristics of shapes of spines that will and will natfr mizes the posterior probability.
ture from a training set of X-ray images for which the fraetur We will assume multivariate Gaussian distributig(s|w; )
status of the subject after a number of years is known. for each of the classes; and, to reduce the complexity of



the model and therewith the risk of overfitting to the data inof normal shapes. To ensure that the model describes only
the case of a relatively small dataset, we assume that bothausible, normal shapes, the shape parameters of the pro-
distributions have equal covariance. The resulting ogdtimajected shape are constrained according to

classifier is the linear discriminant classifier:

1 bi < ky/Ai. (2)
di(x) = InP(w;) — 5[(3’( — ) TR (x = )]

whereX is the pooled covariance matrix, i.e. the average co- 3. EXPERIMENTS
variance matrix weighted by the class prior probabilitas]
; are the class means. 3.1. Data
In the experiments in this paper we use a regularized lin-
ear discriminant classifier [10] and replaXeéy X' A case-control study was performed using X-rays from 218
post-menopausal women selected from a cohort of Danish
Y =(1-a)%+ad’l, (1) women that was followed for assessment of osteoporosis and

. . ) Ny ) atherosclerosis in the Prospective Epidemiological Resé-F
where! is the identity matrix¢~ is the mean variance, and 5 (PERF) study [12]. Out of these 218 women, 109 main-
a regularization parameter with< o < 1. Varyinga makes  (5ined skeletal integrity whereas the other 109 developed o
Fhe classme'r. vary between the non-regulanze@ Ilnealfnhrsc or more vertebral fractures in the course of approximatesy fi
inant classifier and the nearest mean classifier weighted RQ).5s None of the women received treatment for osteoporo-
the class prior probabilities. What is a suitable valuedor g5 ang none experienced an osteoporotic fracture befere th
depends on the number of features and training samples afdsejine visit, including non-vertebral fractures. Cases

on the distribution of the data; a good value can be selected,irols were matched for age, follow-up time, BMD of the
for instance using cross-fold validation on the training se |, mpar spine, and weight. ’ '

Lateral X-rays of the lumbar and thoracic spine were ob-
2.2. One-class model tained at baseline and at follow-up. The X-rays were digitiz

Similarly to the two-class case, the shapes for the one&cla?nd analyzed by experienced radiologists. All vertebrae th

model are assumed to be normally distributed. If the model iere visible in the images, i.e. L5 to L1, T12, or T11in the

trained on ‘normal’ shapes only, the Mahalanobis distance t);—rayr/]s of j[he Iu_mbar region, and go”.“h” ;)r T12 10 T4 ";)
the mean shape can be seen as a measure of abnormality. the thoracic region, were annotated with at least one verte

To reduce the effect of noise in landmark IolaCemem’overlapping in each pair of lumbar and thoracic images. The

we follow the procedure of linear point distribution models gn?r?tatiqgjl cor}s:zted Oft SLX poinas pllatced gnf.th'e cotheds ?n
(PDM) [11] and apply a principal component analysis (PCA)In € miadie ot Ine vertebra end plates, detining the ante-
to the aligned shape vectors to model the shape probabili '

or, middle and posterior heights. The lumbar and thoracic
distribution in a subspace of reduced dimensionality. T® th arts of the spine were combined by rigidly matching the
end, the mean shape the covariance matrix., and the

landmarks of the overlapping vertebra(e) and averaging the
eigensystem oF. are computed. The eigenvectas of 3 doubly annotated landmarks. All landmark coordinates from
provide the so-callethodes of shape variatigdhat describe a

the six points on L5 to T4 were used as features in the classi-
joint displacement of all landmarks. The eigenvectorsesorr

fication. A few examples of observed spine shapes are given
sponding to the largest eigenvalugsaccount for the largest inFig. 1.a. ] ) ] -

variation; a small number of modes usually captures most of Fractures in the follow-up images were identified and
the variation. Each shapein the set can then be approxi- 9raded according to the Genant at al. method of semi-

mated by a linear combination of the mean shape and the§glantitative visual assessment [13] in severity mild, mod-
modes of variation: erate, or severe. Fractures are indicated as mild if oneeof th

three heights is between 20% and 25% smaller than the max-
x=X+®;b+r imum of the heights, moderate if the difference is between
25% and 40% and severe if the difference is larger than 40%.
where®; consists of the eigenvectogscorresponding to the A total of 156 fractures was found in 109 spines at follow
t largest eigenvalue®; = (¢1|¢2]...|¢:), b is a vector of up. Of these, 106 were mild fractures, 39 moderate, and 11
model parameters that specify the contribution of eachef thsevere. If these semi-quantitative scores are added up into
modes, ana is a vector of residual shape variation outside ofan overall spinal deformity index (SDI [4], sum of individua
the model subspace. vertebra scores with normal=0, mild fracture=1, moderate
As a measure of abnormality we now use the approximafracture=2, severe fracture=3), 76 spines had SDI=1 (one
tion error|r| when the observed shape is approximated by itsnild fracture), 25 had an SDI of 2 (one moderate or two mild
projection on the PCA subspace derived from the training sdtactures), 6 had SDi3.
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Fig. 2. ROC curves for fracture prediction using discriminant

. . analysis, for the complete dataset (solid line) and forSDI
Fig. 1. (a) Two randomly selected spine shapes from thg. .,,s SDI=0 (dotted).

group maintaining skeletal integrity (left) and two frometh

group developing a fracture within the next five years (fight

(b) Shape variation across the classification boundary:nmea

spine shape (left), spine likely to fracture (middle) anthep tures were predicted with a specificity of 72%. If the same

likely to stay intact (right). classifier, trained on the same data, is applied to predictin
more severe deformity (SDI2) based on the baseline shape,
accuracy is 0.71, AROC 0.74,= 2.0 x 1075.

3.2. Experimental set-up The one-class model, trained on the normal subjects only,

erforms slightly worse with accuracy=0.56, AROC=0.63,

A set of leave-one-out experiments was performed in whicl? 50 x 10-4

the classifiers for each shape were trained on the remainirpg
217 shapes. For the one-class classification, only the group
maintaining skeletal health was used for training. Sinee th 4. DISCUSSION

size of the spine could carry important information on frac-

ture risk, the shapes are aligned using Procrustes alignmeAs expected, the one-class model, which measures only devi-
with translation and rotation, without scaling. Discrint  ation from normal spines without incorporating the exaraple
classifications are performed using the Matlab patterngeco of spines at risk is less accurate in its prediction of fuftae-
nition toolbox prtools [14]. The regularized linear discrim- tures than the two-class, linear discriminant approachw-Ho
inant classifier of Eq. (1) is used with set to 0.1. For the ever, it may in some cases be difficult to construct a reason-
one-class model, the number of modes selectediwasl0  ably sized training set of spines that are known to fracture,

and shape parameters were constrained according to Eq. @d if this is the case the one-class model could be a viable
with k& = 3. The selected values for parametessk, andt alternative.

maximize the area under the ROC curve (AROC). The proposed methods relies on six landmark points
placed on each of the vertebrae, for which we in this paper
3.3. Results used manual annotations by radiologists. Although this is

common practice in current quantitative morphometry stud-
Fig. 1.b. illustrates the discriminating direction founglthe  ies, manual annotation is of course time consuming and
classifier. A spine shape (in this case the mean shape) wasight hamper large-scale use of these methods. Several
deformed in the most discriminating direction, across theauthors have previously proposed methods for automatic
decision boundary. The discriminating shape variation is @and semi-automatic spine segmentation from X-ray or dual
complex combination of various changes; prominent featureX-ray absorptiometry (DXA) images which might be used
seem to be an overall accentuation of the spinal curve andstead [15, 16, 17].
slight enlargement of the intervertebral spaces in the armb  One shortcoming of the current six-point representation
area. may be that osteophytes and more subtle vertebral shape vari

The difference between the two groups at baseline is sigations can not be captured. In vertebral fracture classifica

nificant withp = 6.0 x 107° in a Wilcoxon rank sum test. use of a full contour representation seems to give a slight im
Future fracturing of the spine is predicted with an accuracyrovement with respect to conventional height measuresnent
(percentage correct classification) of 0.67 and area uhaer t[15, 18], and we would expect a similar improvement if a
ROC curve (AROC) of 0.66. At a sensitivity of 76% frac- full contour annotation could be used in the supervisedeshap



analysis.

Finally, since vertebral fractures often develop without

clear symptoms, the time point at which the subjects in this
study experienced the first fracture is unknown. More exper-
iments on data with varying follow-up time would therefore
be required to find out the time scale at which prediction is
possible.

5. CONCLUSIONS

[7]

(8]

9]

We propose to use supervised learning techniques in a longi-
tudinal setting to aid in disease prognosis, and have applie
this to estimating spine fracture risk from the shape oleskrv

in lateral X-rays. The results in this paper suggest that bot
a discriminant analysis and a one-class approach can detect

variations in spine shape that contribute to the risk ofrieitu [11]

vertebral fractures, independent of important risk facsurch
as age, spine BMD, and prevalent fractures. Superviseeé spin
shape analysis may form a valuable addition to current verte

bral risk assessment strategies.
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