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Abstract. Deformable template models, in which a shape model and its
corresponding appearance model are deformed to optimally fit an object
in the image, have proven successful in many medical image segmentation
tasks. In some applications, the number of objects in an image is not
known a priori. In that case not only the most clearly visible object must
be extracted, but the full collection of objects present in the image.
We propose a stochastic optimization algorithm that optimizes a dis-
tribution of shape particles so that the overall distribution explains as
much of the image as possible. Possible spatial interrelationships between
objects are modelled and used to steer the evolution of the particle set
by generating new shape hypotheses that are consistent with the shapes
currently observed.
The method is evaluated on rib segmentation in chest X-rays.

1 Introduction

Statistical shape models are widely applied in image segmentation [1–3], and are
powerful tools especially in the case of missing or locally ambiguous boundary
evidence. Most approaches perform a local optimization after the shape model
has been initialized on the average position in the image. Alternatively, the best
result of a set of local optimizations with different initializations can be selected.
In the case of multiple objects, one would typically construct a combined model
of all objects and optimize all shapes simultaneously in the image.

In some cases, modelling all objects jointly is not desirable. There may be not
enough training data available to construct a sufficiently flexible and accurate
model, rotation or scaling of one object with respect to another may introduce
unwanted non-linearities in the model, and optimization in a high dimensional
space is computationally more expensive. Moreover, if the number of objects
present in the image is unknown it is impossible to define corresponding points
in all images.

This paper presents a solution to the problem of segmenting an unknown
number of (similar) objects. The segmentation is represented by a distribution
of shape ‘particles’ that evolves under the influence of image terms and inter-
action between neighboring shapes. The particle cloud evolution is similar to
Monte Carlo methods known as ‘Condensation’, ‘particle filtering’, or ‘factored
sampling’, which have been applied to object localization and tracking [4–6].
However, the definition of the image term is different in this case in which mul-
tiple objects are modelled with the same particle distribution.



In a previous paper, we proposed the use of particle filtering to optimize
shape-classification templates on a probability map obtained from pixel classi-
fication. Shape particles are weighted by their likelihood and the particle dis-
tribution is evolved using weighted resampling and a small amount of random
perturbation in each iteration. In this way, particles representing unlikely shapes
vanish while successful particles multiply. The initial sparse sampling evolves into
a δ-peak at the maximum likelihood solution [7].

In the current paper we seek to optimize not just one object, but the entire
shape distribution. The segmentation is represented as the maximum likelihood
(soft) classification of the distribution of shape particles. The weights of the
particles are adjusted so that the classification obtained from the shape set
approximates the observed pixel classification as best as possible. The shape set
thus evolves into the maximum likelihood shape collection.

Spatial consistency of the total segmentation can be enforced by neighbor
interactions between particles. In the particle diffusion step each particle is al-
lowed to produce hypotheses for neighboring shapes on basis of its own shape
and position and a learned conditional shape model. This is especially useful in
regular shape patterns such as the spine or the rib cage. If one vertebra or rib
is found in the image, there is a high probability that a second vertebra or rib
is present with approximately the same shape but a few centimeters higher or
lower.

We applied this method to segmenting the ribs in the lung fields in chest
radiographs. Rib segmentations are used for instance as a frame of reference for
localizing abnormalities such as lung nodules, and to eliminate false positives in
abnormality detection that frequently occur at crossings of posterior and anterior
parts of the ribs. Classical approaches which fit geometrical models to edges in
the image may miss some ribs and detect other ribs twice [8]. Loog [9] combined
gray value features and contextual features in an iterative classification scheme,
thus learning an implicit model of local rib structure. Although this produced
significantly smoother and more accurate results than pixel classification based
on intensity features alone, in some cases ribs were completely missed or the
clavicles mistaken for ribs. The fact that consecutive ribs often have similar
shapes and are regularly spaced calls for a global shape model describing the
relations between different ribs, but construction and optimization of a global
shape model is problematic since the number of ribs visible in the lung fields
can vary. Ramachandran et al [10] showed that a pre classification of training
images by the number of visible spaces between the ribs significantly improves
the success of active shape model (ASM) segmentation.

In this work we do not model the full rib cage, but instead model separate
ribs and fit those to the image in a consistent pattern using a model of spatial
interrelationships between neighboring rib shapes. Neighbor relations between
successive ribs in the same lung field as well as between the ribs at the same
height in the opposite lung field are modelled.

Section 2 explains the main ideas behind the estimation of a maximum like-
lihood shape collection whereas Section 3 explains further how these ideas can



be brought into practice. Section 4 gives more details on all ingredients required
for multiple object segmentation and the algorithm proposed. Specific choices
for rib segmentation and experiments on chest X-rays are described in Section
5. Sections 7 and 8 provide a discussion and conclusions.

2 Image explanation as maximum likelihood

The standard approaches of fitting a shape model to an image can be written in
Bayesian formulation as

p(S|I) ∝ p(I|S)p(S)

where the shape S is searched for in the image I either as maximum a posteriori
(MAP) estimate maximizing p(S|I) or as maximum likelihood estimate (ML)
maximizing p(I|S). In both cases the maximum likelihood term may be evaluated
as an object fit assuming an appropriate spatially independent noise model,
maximizing

log p(I|S) ∝
∫

Ω(S)

U(I(x), S(x, θ))dx (1)

where x are the image coordinates, θ contains the shape model parameters to be
optimized, U is the local log-likelihood function, and Ω(S) is the spatial domain
of S(·, θ). In the following we will generalize this to a collection of shapes.

Let S denote a collection of N shape instances:

S = {S1, S2, . . . , SN}

Now one straightforward generalization of the likelihood term (Eq. 1) is the sum
of the individual terms:

∑

i

∫

Ω(Si)

U(I(x), Si(x, θ))dx

However, this sum of model fits of individual shapes is not the same as the
likelihood of the collection of shapes. Optimization of θ with respect to this sum
would result in all shapes fitting to the one object with the strongest image
evidence. This is due to a simplification made in single-shape modelling that the
integration area is only over the shape model. For a proper ML-estimation, all
data must be modelled, and the integration domain is the full image domain.
The collection likelihood then reads:

log p(I|S) ∝
∫

Ω(S)

U(I(x),S(x, θ))dx

Hence, in every position in the image, it is necessary to take all (overlapping)
shapes into account.



3 Computational approach

Let us assume, that the data I(x) takes values in a discrete set C = {c1, c2, . . . , cK}
where ci can be integer pixel values or, as in the example below, pixel classes.
Let us now for simplicity assume that in a given pixel, the pixel class due to the
individual shapes is given deterministically and independent of the other shapes
in the collection, so that

p(cj |S) =
∑

i

p(cj |Si)p(Si) =
∑

i

δ(c(Si(x)), cj)p(Si) (2)

In the simple case where all the overlapping shapes are equally probable, this
is simply the fraction of overlapping shapes that vote for the class ci.

Let us now represent the shape collection S by a weighted set of shape in-
stances Si with shape parameters θi. The weights αi denote the relative prob-
ability of these shape instances. In order to estimate the maximum likelihood
shape collection, we must simultaneously optimize over Si = S(θi) and αi.

This optimization can be achieved by particle filtering iterating over

α = arg maxα p(I|θ, α)
θ = sampling p(S|S) (3)

The first equation may be solved for analytically or obtained by stochastic
optimization. If an infinite number of particles S(θi) were available, S(θ, α) is the
maximum likelihood shape collection after this first optimization. To make the
optimization efficient, we start out with a sparse sampling in p(S) and condense
this distribution around likely shape collections by the sampling step in Eq. 3.
This sampling may be realized by first sampling in p(Si) = αi and then in
p(S|Si). The distribution p(S|Si) represents the belief in S being a true shape
in the image when the shape Si has been observed in the collection.

If the variance of p(S|Si) decreases to zero in successive iterations the choice
of distribution does not influence the point of convergence, as long as p(S1|S2) =
p(S2|S1) and the distribution can explore the full solution. The algorithm is
guaranteed to converge to the maximum likelihood solution for a collection of
shapes. The proof is analogous to the proof for the individual shape fitting by
particle filtering [7].

However, the rate of convergence can be improved by choosing p(S|Si) so
as to explore the solution space most effectively. Here, knowledge of spatial
relationships between different objects can be exploited by letting a selected
particle Si produce a plausible hypothesis for a neighboring shape. p(S|Si) could
then be a mixture of densities describing both the uncertainty in the observation
Si and the conditional densities p(Sn|Si) of all possible neighbors Sn given the
observation Si.

If the variance in p(S|Si) does not vanish during iteration, the distribution
converges to the maximum likelihood shape collection convolved with p(S|Si).



4 Implementation

This section describes in more detail all ingredients needed to perform multi-
object shape model segmentation, viz. a shape model, an image appearance
model, possible neighbor relations, and an optimization algorithm.

4.1 Shape model

To constrain the shape of possible solutions, any kind of shape model from which
samples can be drawn can be inserted here. We will use the popular linear point
distribution models (PDM) as proposed by Cootes and Taylor [1] to model the
object shape variations observed in a training set.

Shapes are defined by the coordinates of a set of landmark points which
correspond between different shape instances. A principal component analysis
on a collection of aligned example shapes yields the so-called modes of shape
variation which describe a joint displacement of all landmarks. Each shape can
then be approximated by a linear combination of the mean shape and these
modes of variation. Usually only a small number of modes is needed to capture
most of the variation in the training set.

4.2 Neighbor interaction

As was described in Section 3, the interaction between neighboring shapes can
be introduced in the step of perturbation of the degenerate particle set after
resampling. This requires P (S1|S2), the probability distribution of the expected
neighbor of a given shape. In the case where both shapes are modelled with a
linear PDM, this is given by the Gaussian conditional density

P (S1|S2) = N (µ, K)

with
µ = Σ12Σ

−1
22 S2

K = Σ11 −Σ12Σ
−1
22 Σ21

and Σij are obtained from the covariance matrix of the combined model

Σ =
[

Σ11 Σ12

Σ21 Σ22

]

as
Σij =

1
n− 1

∑
n

(Sin − S̄i)(Sjn − S̄j)T .

Alternatively, one could leave out the interaction between particles (i.e. per-
turbed particles are always similar to the particle that produced them) to obtain
a segmentation of an unknown number of objects with unknown spatial interre-
lations.

Both approaches are tested on the rib data.



4.3 Image observation model

In the following, we will use class probability density measurements rather than
discrete classes as the image observations as given in Equation 2. The class
probability is obtained using a pixel classifier trained to distinguish between
foreground and background pixels on the basis of local image descriptors. We
have used a k-NN classifier and the outputs of a set of Gaussian derivative filters
at multiple scales as image features.

Class probabilities in a pixel x are then defined by

P (ω|x) =
kω

k
,

where kω among the k nearest neighbors of x belong to class ω.
We still assume that the pixel class due to the individual shapes is given

deterministically, that is, each shape Si is associated with a fixed class template
Ti(x, ω) that defines to which class each pixel belongs. Typically, there will be
two classes, one object and one background class. The aim is thus to produce
a shape distribution, expressed as a weighted set of shape particles, of which
the maximum likelihood classification M(x, ω) is as similar as possible to the
observed (soft) classification of the image C(x, ω).

4.4 Algorithm

The algorithm for the desired optimization over θ and α looks as follows:

– Sample N shape particles Si randomly from the prior distribution p(S)
– Repeat:

1. Compute weight αi for each particle (
∑

i αi = 1):
Initialize:
Particles Si receive a weight αi according to their overlap with the ob-
served classification C, normalized for size. If several particles vote for
the same class in the same pixel, they share the weight between them:

αi =
1∑

x,ω Ti(x, ω)

∑
x,ω

C(x, ω)× Ti(x, ω)
H(x, ω)

H(x, ω) =
∑

s

Ti(x, ω)∑
x,ω Ti(x, ω)

Optimize αi:
In random permutation over particles Si, with decreasing step size dα:
(a) select particle Si

(b) increase αi by dα, decrease α¬i so that
∑

s αi = 1

(c) M(x, ω, α) =
∑

s
αiTi(x,ω)∑

s,ω
αiTi(x,ω)



(d) f =
∑

x,ω M(x, ω, α)× C(x, ω)
(e) if f increased accept new α

2. Produce a new particle set through weighted sampling with replacement
according to αi

3. Perturb the particles from the new sample set by sampling from p(S|Si)

5 Rib segmentation using shape particle filtering

A set of leave-one-out experiments was performed on 30 standard digitized
posterior-anterior chest radiographs of size 256 × 256, taken from the publicly
available JSRT (Japanese Society of Radiological Technology) database [11].
This section describes the specific choices made for rib segmentation.

5.1 Shape models

The proposed algorithm can simultaneously detect and segment an unknown
number of similar objects. This could include several different types of objects
as well.

For the rib application we have constructed two shape models, one for the left
ribs and one for the right ribs. The size and shape of a rib in an X-ray image is
strongly correlated with the position in the image. We therefore do not perform
a full Procrustes alignment as would usually be preferred in shape model based
segmentation. Instead, we translate each image such that the top of the lung
fields (minimal y coordinate) and the horizontal center (median x-coordinate)
coincide. Since the task of lung field segmentation is much less cumbersome than
rib segmentation [8], we will assume that these coordinates are (approximately)
known in a new image.

The lung fields and the part of the ribs that is visible in the lung fields
have been manually delineated in all images. Ribs are subsequently described
by landmarks equidistantly interpolated between the four corner points where a
rib intersects the lung field. Ribs that have fewer than 4 corner points are not
taken into account in model construction, but they can still be segmented as a
variation in position of the ribs is automatically included in the model.

The spatial relations that are modelled are the first neighbor relationships
between consecutive ribs in the same lung field and between the ribs that are at
the same height in the both lung fields. Thus, in the particle perturbation step,
a rib shape from the shape collection can either produce a perturbed version of
itself or of its upper, lower, or left/right neighbor.

A linear PDM of the two shapes concatenated in one shape vector is con-
structed as described in Section 4. The models for a single rib, the combined
models and an example of a conditional model as used in neighbor interaction
are shown in Figure 1.



Fig. 1. Examples of the shape-and-pose models constructed for rib segmentation. From
left to right, the first three modes of shape variation are visualized with the mean shape
in red and the mean shape ± 2 standard deviations in blue, except for row 4 which
shows the mean shape ± 4 standard deviations. From top to bottom: 1. Right rib
model 2. Right successive ribs model 3. Opposite ribs model 4. Model of the lower rib
conditioned on the mean shape of the upper rib. The axes of the plots correspond to
the true image size for rows 1 – 3; row 4 is a close-up.



5.2 Settings

We use a set of Gaussian derivative filters at multiple scales as image features
and a k-NN classifier for probability estimation. Features include the original
image and the derivatives up to the third order computed at a scale of 1, 2,
and 4 pixels, resulting in a 21 dimensional feature space. The set of samples is
normalized to unit variance for each feature, and k-NN classification is performed
with an approximate k-NN classifier [12] with k=25. These settings were selected
because they previously yielded good results on lung field classification [7] and
have not been adjusted for rib classification.

Class templates as defined for each shape have two classes; inside the rib
and outside the rib but within the lung fields. The template is defined by the
interior of a rib shape plus a border of 5 background pixels (approximately
half the thickness of a rib), so that most of the ribs can be described without
overlapping the rib class of one shape template with the background class of
another shape’s template.

In the experiments presented here, the algorithm was run for 10 iterations
without checking for convergence. The number of particles used for filtering is
1000, starting with 500 left ribs and 500 right ribs. The noise added in the particle
perturbation step is of standard deviation σd = 0.05 σ, with σ the standard
deviation of the prior shape models. The prior for producing itself or one of its
three first neighbors is chosen as uniform; each case occurs with a probability of
0.25.

6 Results

An example of segmentations obtained, with and without neighbor interactions,
is given in Figure 2. Overall, segmentations using shape set filtering are spatially
more consistent than the original pixel classification which includes spurious pix-
els and shows holes in the ribs. Without neighbor interaction, shape filtering may
overlap crossing rib shapes to reconstruct the holes in the original classification.
Shape set filtering with neighbor interaction finds the correct consistent rib pat-
tern in most cases.

The error rate of shape set filtering with neighbor interaction is 18.7%, which
is not significantly different from the error for the original pixel classification
(19.1%, p = 0.6). Shape collection filtering without neighbor interaction performs
worse (21.7%, p < 0.0001).

Figure 3 shows an example of the type of misclassifications by standard
pixel classification compared to the proposed method. In general, shape filtering
makes fewer gross errors like missing a rib completely or classifying the clavicles
as ribs. There are, however, more errors near the rib boundaries which indicates
that incorrect shapes have been forced on the segmentation. This may be either
caused by an incorrect shape model or by a too strong neighbor interaction.
Furthermore, the ribs in the lung tops —which is a problematic area for pixel
classification— are difficult to segment also with our method.

The process of evolving the particle set is illustrated in Figure 4.



Fig. 2. Examples of segmentations obtained. The top row shows the original X-rays and
the different soft classifications; the bottom row shows the hard classifications obtained
by thresholding the soft classification at 0.5. From left to right: Ground truth, original
pixel classification, shape set filtering without neighbor interaction; shape set filtering
with neighbor interaction.

Fig. 3. Typical segmentation errors by pixel classification (left) and shape set filtering
with user interaction (right). False positives are in black, false negatives in white,
correct classification in gray.

Fig. 4. Evolution of the shape set classification. From left to right: First, third, fifth,
and tenth iteration.



7 Discussion

In the current paper we have optimized a collection of shapes on the output of a
pixel classifier based on local image descriptors. Such an approach was shown to
be successful for single-object segmentation in several medical imaging applica-
tions [7]. The incorporation of shape constraints improves the spatial coherence
of the pixel classification. However, as the shapes try to adhere to the pixel
classification, the results will not be correct if the initial pixel classification re-
sults are far from the correct solution. An iterative method in which the method
presented here, optimizing a shape collection to match the classification, is al-
ternated with a pixel classification step in which the current shape collection is
used as a prior, would likely improve the results.

Further improvements can be expected if more advanced shape models are
used. Currently, a large variation in rib shape and position is modelled with a
simple linear model, without optimizing point correspondences. This frequently
results in ‘illegal’ shapes being produced. Although this problem is less severe
in the case of a large set of shapes, it may result in a blurred and less consistent
classification, especially in the less regular top and bottom parts of the lungs.

In addition, in this work the variance in the particle perturbation step was
kept constant during iteration. This means that in each iteration new hypotheses
of neighboring particles are introduced in the shape collection. If the observed
shape did not have a neighbor in that location or the neighbor has a different
shape, the weight for these particles will be small, but this still results in a
smearing out of the end result and occasionally in an extra rib being detected at
the top and the bottom of the lung fields. This could be remedied by adjusting
the interaction prior to reflect the fact that ribs in the lung tops are less likely
to have an upper neighbor than those in the bottom of the lung fields, or by
decreasing the variance of the perturbation density p(S|Si) over time.

Interaction between neighbors is currently realized by sampling in p(S|Si)
after a new sample set of particles has been selected by sampling proportionally
to the image likelihood weights αi. Thus, the weight of a particle is determined
by image forces and interaction between particles is achieved only by successful
particles producing hypotheses for their neighbors. A stronger constraint of spa-
tial consistency can be enforced by accepting a particle in the next iteration with
a probability proportionally to its consistency with the rest of the current shape
collection. We are currently investigating the advantages of various schemes.

Although we have for simplicity assumed that the position of the lung fields
in the image is known approximately, in a previous paper we successfully applied
shape particle filtering to segmentation of the lung fields [7]. Rather than first
segmenting the lungs and subsequently finding ribs near the lungs the two tasks
could be elegantly combined by filtering ribs and lungs simultaneously where the
rib model is conditioned on the lung shapes. This would yield a more constrained
shape-and-pose model for the ribs and may lead to better segmentations.



8 Conclusions

We propose a stochastic optimization algorithm which is capable of segmenting
an unknown number of similar objects in an image. This method finds spa-
tially more consistent segmentations than pixel classification without shape con-
straints. Interaction between neighboring shapes enforces consistency in regular
patterns of similar shapes and improves upon the results without interaction in
segmenting the ribs in chest radiographs.
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