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Abstract. Active Shape Models (ASM) have proven to be an effective approach
for image segmentation. In some applications, however, the linear model of gray
level appearance around a contour that is used in ASM is not sufficient for accu-
rate boundary localization. Furthermore, the statistical shape model may be too
restricted if the training set is limited.
This paper describes modifications to both the shape and the appearance model
of the original ASM formulation. Shape model flexibility is increased, for tubular
objects, by modeling the axis deformation independent of the cross-sectional de-
formation, and by adding supplementary cylindrical deformation modes. Further-
more, a novel appearance modeling scheme that effectively deals with a highly
varying background is developed. In contrast with the conventional ASM ap-
proach, the new appearance model is trained on both boundary and non-boundary
points, and the probability that a given point belongs to the boundary is estimated
non-parametrically.
The methods are evaluated on the complex task of segmenting thrombus in ab-
dominal aortic aneurysms (AAA). Shape approximation errors were successfully
reduced using the two shape model extensions. Segmentation using the new ap-
pearance model significantly outperformed the original ASM scheme; average
volume errors are 5.1% and 45% respectively.

1 Introduction

Segmentation methods that are trained on examples are becoming increasingly popular
in medical image analysis. The techniques that model both the shape and the gray level
appearance of the object, such as Active Shape Models (ASM) [1], Active Appearance
models [2], and M-Reps [3], can produce correct results even in the case of missing or
confusing boundary evidence. In this paper we shall concentrate on the frequently used
ASMs, which consist of a landmark-based linear shape model, linear gray value appear-
ance models around the landmarks, and an iterative optimization scheme. ASMs have
been applied to various segmentation tasks in medical imaging [4–8], most successfully
in 2D segmentation of objects with fairly consistent shape and gray level appearance.

However, many segmentation problems in medical imaging are 3D, and gray levels
may be variable. Often not enough training data is available to build a correct 3D model.
The model will be over-constrained and hence does not generalize well to new shapes
of the same class. Furthermore, if the object to segment lies within variable anatomy,
such that a given landmark can be next to different tissue types, boundary appearance
may vary largely. In that case, a linear model of gray value appearance may produce



unreliable results. We show how ASMs can be adapted to deal with these problems. We
focus on the segmentation of tubular structures, but some of the adaptations presented
are more generally applicable.

We propose three main modifications to conventional ASMs. First, elongated struc-
tures are modeled more flexible by modeling the axis and cross-sectional shape defor-
mation separately, thus assuming both types of variation to be uncorrelated. The two
models are combined into one model describing both deformations, that is fitted using
the regular ASM optimization scheme. Second, supplementary smooth deformation is
introduced by adding synthetic covariance. Our approach is similar to that of Wang
and Staib [9], but differs in that we decouple the smooth deformation in x, y and z-
directions, which makes the approach feasible in 3D. Third, the linear one-class gray
value model that is used in ASM is replaced by a novel non-parametric multi-class
model that can deal with arbitrary gray value distributions and makes more effective
use of the prior information on gray level structure around the object contour.

We have evaluated our method on segmentation of thrombus in abdominal aortic
aneurysms (AAA) in CTA data. Most publications on computerized AAA segmentation
have concentrated on segmentation of the contrast-filled lumen. Thrombus segmenta-
tion is a more difficult problem, complicated by regions of low boundary contrast and
by many neighboring structures in close proximity to the aneurysm wall. Previously
reported approaches yield inaccurate results [10] or need extensive user interaction [7].

Leave-one-out experiments were performed on 23 routinely acquired CTA scans of
different patients, to compare the proposed modifications with the conventional ASM
approach. All images were segmented manually by an expert.

2 Methods

The original ASM segmentation scheme is briefly described in Section 2.1. Section 2.2
presents several extensions to the shape model. The new appearance model is discussed
in Section 2.3.

2.1 Active Shape Models

In ASMs [1], shape variations in a training set are described using a Point Distribution
Model (PDM). The shape model is used to generate new shapes, similar to those found
in the training set, which are fitted to the data using a model of local gray value structure.

Point distribution models A statistical model of object shape and shape variation
is derived from a set of s training examples. Each training example is described by a
shape vector x containing the coordinates of n landmark points that correspond between
shapes. Variations in the coordinates of these landmark points describe the variation in
shape and pose across the training set. The shape vectors are aligned using Procrustes
Analysis and transformed into the tangent space to the mean shape [1].

Principal Component Analysis (PCA) is applied to the aligned shape vectors. To
this end, the mean shape x, the covariance matrix S, and the eigensystem of S are
computed. The eigenvectors φi of S provide the modes of shape variation present in



the data. The eigenvectors corresponding to the largest eigenvalues λ i account for the
largest variation; a small number of modes usually explains most of the variation. Each
shape x in the set can then be approximated using x ≈ x + Φb, where Φ consists of
the eigenvectors corresponding to the t largest eigenvalues, Φ = (φ 1|φ2| . . . |φt), and
b is the model parameter vector that weighs the contribution of each of the modes.

Appearance model Fitting the shape model to a new image requires a measure of
probability that an image point belongs to the boundary. In the original ASM formula-
tion, a linear model is constructed from gray value profiles that are sampled around the
landmarks from the training set, perpendicular to the object contour. The effect of global
intensity changes is reduced by sampling the first derivative and normalizing the profile.
The normalized samples are assumed to be distributed as a multivariate Gaussian, and
the mean g and covariance matrix Sg are computed. The measure of dissimilarity of a
new profile gs to the profiles in the distribution is given by the squared Mahalanobis
distance f(gs) from the sample to the model mean:

f(gs) = (gs − g)T S−1
g (gs − g). (1)

Optimization The shape model is fitted to new images using a fast deterministic op-
timization scheme. The process initializes with a plausible shape, usually the mean.
The appearance model determines for each landmark its optimal new position among
2ns + 1 candidate positions along the line perpendicular to the contour, n s on both
sides. Iteratively, the shape is translated, rotated, scaled, and deformed, such that the
squared distance between the landmarks and the optimal positions is minimized. To
ensure plausible shapes, the shape parameters b i are constrained to lie within ±3

√
λi.

This process of adjusting landmark positions and shape parameters is repeated a fixed
number of N times, whereupon it is repeated at the next level of resolution.

2.2 Extending PDMs

A common problem in statistical shape modeling is that the model can be too specific
to fit to new shapes properly, owing to a limited amount of training data. This is often
the case with three-dimensional models, where a large number of landmarks is needed
to describe a shape properly. This section describes two different approaches for gen-
eralizing models of curvilinear structures. Hereto, first the automatic landmarking used
in our experiments needs to be explained.

Landmarking strategy A fixed number of slices nz is interpolated between beginning
and end of the object. In AAA segmentation, the original CT-slices are used since they
are perpendicular to the body axis and give approximately perpendicular cross-sectional
views of the aorta. Alternatively, reformatted slices perpendicular to the object axis
could be used. An equal number of landmarks nxy is placed in each slice, equidistantly
along contours that were drawn manually by an expert. The starting point of a contour
is the posterior point with the same x-coordinate as the center of mass.



Fig. 1. Shape models built from the two input shapes on the top left. The axis of one of the input
shapes is straight while the diameter of its cross-section increases towards the vertical center.
The other input shape has a constant circular cross-section around a curved axis. A PDM built
directly from these two input shapes contains one mode of shape variation, varying between thin
shapes curved to the left and fat shapes curved to the right. The combined model (TPDM) finds
two modes of variation; the first describes a curving of the object’s axis and the second describes
an increase or decrease in diameter from the ends towards the center.

We model 3D cylindrical shape variations, restricting the deformation to in-slice
landmark displacements. Before the model is fitted to a new image, the user indicates
the beginning and end of the desired segmentation, thus removing the need for scaling
in the z direction. As a consequence, the shape vectors contain only x and y coordinates.

Modeling axis and cross-sections separately The ability of the model to generalize
to unseen shapes can be increased by modeling the axes and cross-sections separately,
thus assuming that both types of shape variation are uncorrelated. Subsequently, the two
models are combined into one model describing both deformations.

To this end, s central axes and s straightened shapes are extracted from the s aligned
training shapes. Each axis contains one landmark per slice, defined by the centroid of
the contour in that slice. The straightened shapes are formed by translating each contour
such that its centroid is in the origin. PDMs are derived for both shape distributions as
described in Section 2.1.

To combine the mode vectors of the two models they need to be of equal dimensions.
However, while the axis modes have 2nz coordinates, the straightened modes are of
dimension 2nznxy. To extend a mode of axis variation to 2nznxy , a shape vector is
constructed which has the nxy landmarks in each slice positioned at the axis points. If
this deformation is applied to a shape x, the landmarks in each slice of x are translated
such that their centroid coincides with the deformed axis.

In general, the two models will not be linearly independent. A second PCA is there-
fore performed to remove any correlation between the axis and the cross-sectional
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Fig. 2. Examples of synthetic deformation of a cylinder. The frequency of z-deformation in-
creases from left to right, and that of x-deformation from top to bottom.

modes. The modes of shape variation of the combined model are thus given by the
principal components of (ΦcrossWcross|ΦaxisWaxis), where Φcross and Φaxis are con-
catenations of mode vectors and Wcross and Waxis are diagonal weight matrices of the
corresponding

√
λi.

The resulting model contains at maximum 2(s−1) modes, provided that s−1 < n,
while a model built from all shapes directly would contain only s− 1 modes. Figure 1
illustrates the effect of this generalization.

Additional smooth variation Several authors have investigated the combination of
statistical deformation modes with synthetic smooth deformation obtained from finite
element method (FEM) models of shape instances, or smooth deformation independent
of the object’s shape. For instance, Wang and Staib [9] apply smoothness constraints in
the form of a smoothness covariance matrix C that consists of positive numbers on the
diagonal and off-diagonal elements representing neighboring points, so that each point
is allowed more variation, and neighboring points are more likely to vary together. C
is added to the covariance matrix S obtained from the training data, and an extended
shape model is obtained by computing the eigenvectors of the new covariance matrix.

A disadvantage of this procedure is that the eigenvectors of the full D × D co-
variance matrix have to be computed, while in the case that the number of samples s is
smaller than the dimensionality of the shape vectorsD, PCA requires only the eigenvec-
tors of an s× s matrix. Eigenvector decomposition is an O(D 3) problem and becomes
impractical for high dimensions.

Our approach is similar to that of Wang and Staib [9], but we circumvent the com-
putation of the eigenvectors of the full covariance matrix by decoupling the deformation
in the x, y, and z directions. The 3D deformation modes of a cylindrical object are thus
built up of smooth deformations of cyclic sequences of x and y-coordinates and a non-
cyclic sequence of z-coordinates. For the cyclic sequences, C is circulant and there-



fore has sinusoidal eigenvectors. The first eigenvector is a constant, corresponding to a
translation of the entire object, and subsequent eigenvectors correspond to sine-cosine
pairs with an increasing number of full periods. For the non-cyclic sequence, the first
eigenvector approximates a half period of a sine. Subsequent eigenvectors correspond
to approximate sines with an increasing number of half periods.

We set the elements of the synthetic covariance matrix according to a Gaussian. The
x and y deformation are then given by the eigensystem of the circulant n xy×nxy matrix

with elements e−(
di,j
2σ )2 , where i and j are the matrix row and column indices, nxy is the

number of landmarks in one slice, and d i,j = Min{|i− j|, |i− j+nxy|, |i− j−nxy|}.
The z deformation is given by the eigensystem of a similar but non-circulant n z × nz

matrix, with nz the number of slices in the model and di,j = |i− j|.
In the following we denote the eigenvectors of the xy and z deformation by χ i and

ψi respectively. The deformations in the xy plane of the entire shape are now given by
2nxy shape vectors where the elements corresponding to x-coordinates in each slice are
set according to one of the smooth x deformation modes, while the y-elements are zero,
or the other way around. To include all possible variations along the z-axis, each of the
xy-modes is combined with each of the z-modes by multiplying the elements in a slice
of the xy-mode by the corresponding element of the z-mode:

{
xi,j = ψ(i) · χ(j)
yi,j = 0 or

{
xi,j = 0
yi,j = ψ(i) · χ(j) (2)

where i is the slice index and j is the number of the landmark in the slice. The resulting
deformation vectors are centered around the origin and normalized to unit length. The
eigenvalues, used for weighting of the modes, are obtained through multiplication of
the eigenvalues that correspond to the original xy and z modes.

The result is an orthonormal set of 2n vectors describing smooth cylindrical defor-
mations. In practice, a much smaller number of harmonics is chosen, such that only
low-frequency deformations remain. The eigenvalues are multiplied by a weight factor
α and the model is combined with the statistical model in the same way as the axis and
cross-section models are combined in the previous subsection. Figure 2.2 shows several
examples of smooth deformation modes applied to a cylinder.

The parameters involved in this augmented model are the smoothing scale σ, the
number of synthetic modes retained, and the weight factorα. The scale σ mainly weighs
the modes of different frequencies; a larger σ increases the eigenvalues for low frequen-
cies and decreases the eigenvalues of high frequency variation, thus favoring smoother
deformation. The weight factor α weighs the synthetic model with respect to the sta-
tistical model and should decrease if more training shapes are added. These parameters
can for instance be selected by defining a threshold on the maximum reconstruction
error allowed in leave-one-out experiments on the training data.

2.3 A Nonlinear Appearance Model

We previously showed that the Mahalanobis distance to the average training profile does
not perform well in AAA boundary localization [7]. A shortcoming of this gray value
model is that only the appearance of the correct boundary is learned from the training



set. Furthermore, the underlying assumption of a normal profile distribution often does
not hold. To deal with a non-linear profile distribution, Bosch et al. [11] performed a
non-linear normalization to transform an asymmetric, but unimodal distribution into
a Gaussian. Brejl and Sonka [12] applied fuzzy c-means clustering to feature vectors
derived from intensity profiles, allowing for a (known) number of separate normal dis-
tributions. Van Ginneken and co-authors [5] did not use intensity profiles, but applied
local texture features and kNN classification to determine the boundary between object
and background, hence allowing arbitrary distributions as long as the texture of object
and background are different. In medical image segmentation tasks, surrounding struc-
tures are often similar to the object in gray value and texture, and the ordering of gray
values along the profile can become important.

We propose to treat the position evaluation step in the ASM optimization as a classi-
fication of boundary profiles. Like in the original ASM formulation, gray value profiles
are sampled from the training set, but now a classifier is trained on both correct and
incorrect boundary profiles. Raw intensity profiles are used instead of the normalized
derivative profiles of the linear model. For each landmark, one boundary profile is sam-
pled around the landmark and perpendicular to the contour, and 2n shift non-boundary
profiles are sampled in the same direction, nshift displaced outwards and nshift dis-
placed inwards.

In a new image, the probability that a given profile lies on the aneurysm boundary
is given by the posterior probability from the classifier for that profile. In this work, a
kNN classifier is used and the posterior probability is given by

P (boundary|gs) =
nboundary

k
, (3)

where nboundary is the number of boundary samples among the k nearest neighbors.
Like in the original ASM formulation, separate models are built for different reso-

lutions.

3 Experiments and Results

A series of leave-one-out experiments is performed on 23 routinely acquired CTA im-
ages including pre-operative as well as post-operative scans. The scan resolution is
0.488× 0.488× 2.0 mm.

Parameter settings We have selected a set of parameters on the basis of pilot ex-
periments, and keep those settings fixed throughout the experiments. The shapes are
described by nz = 30 slices each containing nxy = 50 landmarks; a total of 3000 land-
mark coordinates. The number of modes of the axis and cross-section models is chosen
such that both models describe at least 99% of the total variance across the training
set. The smooth deformation modes are built of a smoothness matrix with scale σ = 4,
and the 26 strongest xy deformation modes and 12 strongest z deformation modes are
selected, thus allowing up to 6 sine periods in all directions. The weight factor α is set
such that the contribution of the synthetic model to the total variance is 10% of that of
the statistical model. The statistical shape model is applied to obtain an initial estimate,
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Fig. 3. (a) Root mean squared reconstruction error for all 23 datasets using all modes of variation,
for a normal three-dimensional PDM (white), the combined model of axis and cross-sections
(gray), and the combined model with additional smooth deformation (black). (b) Root mean
squared segmentation error for all 23 datasets, for the linear model (gray) and the kNN model
(black).

up to the second highest resolution. The fit is then refined on the smallest scale using
the model extended with synthetic deformation.

The profiles of the gray value models consist of 7 samples. The kNN appearance
model contains, in addition to a correct boundary profile, examples shifted d shift = 2
voxels inwards and outwards, for each landmark. The number of neighbors considered
in the kNN probability estimation, k, is 80. The fitting algorithm evaluates n s = 5
possible new positions on both sides of the present landmark position, and performs 5
iterations at each of 4 resolution levels.

Shape model evaluation The validity of the shape model is tested by fitting the model
directly to the manual segmentations, which gives an upper bound for the accuracy
that can be obtained when the model is fitted to new image data. Figure 3.a shows the
root mean squared landmark-to-contour error for all datasets. Modeling the axis and
cross-section separately reduced the reconstruction leave-one-out error in all cases; the
average error was reduced from 2.2 to 1.6 mm. The average error decreases to 0.74 mm
if smooth deformation modes are added to the model.

Appearance model evaluation In vascular images, there is no true anatomical corre-
spondence between the landmarks of different shapes. Therefore, we use one appear-
ance model for all landmarks together, instead of building separate models as is more
commonly done in ASM. Pilot experiments on image slices have shown that this ap-
proach gives slightly better results for both the linear and the kNN model, even if many
training examples are available. Figure 4 shows the error in optimal position selection
as a function of the size of search region ns around the manual contour. The kNN
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Fig. 4. Root mean squared error of landmark positioning, without fitting the shape model, as a
function of the length of the search region on either side of the contour, for (a) the original ASM
gray value model, and (b) the kNN gray value model. The dotted line corresponds to the expected
error for random landmark selection.

model performs significantly better than the conventional ASM gray value model at all
resolutions.

Initialization and constrained optimization The complexity of the images and the
local nature of ASM optimization require an accurate initialization. In our segmentation
system, the user draws the top and bottom contours of the aneurysm manually. To aid
the model in establishing the correct object axis an additional point is placed in the
approximate aneurysm center of the central slice. An initial estimate is obtained by
iteratively fitting the shape model to these points. After each iteration, the landmarks
of the manually drawn slices are replaced to their original position and the landmarks
of the central slice are translated such that their average position coincides with the
manually identified center point. Alternatively, an automatic estimate of the luminal or
aneurysmal axis or a — more easily automated — lumen segmentation could be used
for initialization.

Subsequently, a fixed number of slices is interpolated from the image, and the shape
model is fitted at multiple resolutions to optimally match the local image structure,
given the two manually drawn contours. The segmentation process is constrained by
keeping the two manually drawn slices fixed. To make the fitting process more resistant
to outliers, we have applied dynamic programming regularization [6] followed by a
weighted least squares fit [8], in which the weights are given by the posterior probability
obtained from the gray value model.

Segmentation results Given this initialization and the constrained optimization scheme,
the segmentation method using the extended shape model and the kNN gray value



Fig. 5. Image slices taken randomly from the 21 successful segmentations, with the manually
drawn contour (dots), the segmentation obtained using original ASM (pluses) and the segmen-
tation obtained with the kNN gray value model (continuous line). The kNN model obtains a
segmentation near the manual contour in all four cases, while the original ASM gray value model
finds a satisfactory segmentation only in the third image.

model converged successfully in 21 out of 23 cases. Examples of segmented slices,
randomly chosen from these 21 datasets, are shown in Figure 5.

Figure 3.b shows the segmentation errors obtained using the two gray value models.
The kNN model yields significantly better results than the original ASM model (p <
0.00001 in a paired t-test). Average root mean squared errors are 1.9 and 8.1 mm (3.9
and 17 voxels). The relative volumes of overlap are 95% and 64%, and average volume
errors are 5.1% and 45%. There are two datasets in which the error obtained using
the kNN model is larger than half a centimeter. One of these combines an extremely
wide aneurysm with calcifications, which are usually found only at the boundary, inside
the aneurysm; in the other dataset the aneurysm is embedded in other structures with
similar gray value for over 10 adjacent slices, while the total region comprised by the
aneurysm and its surrounding structures forms a plausible aneurysm shape. If these two
problematic datasets are left out of consideration, the average error of the remaining
21 datasets is 1.4 mm. The corresponding volume of overlap is 96% and the relative
volume error 2.8%.

Wever et al. [13] reported an inter-observer reproducibility coefficient (RC) of 8.3%
and intra-observer RC of 3.2% and 5.7% for measurement of the total aneurysm volume
in CTA. RC is, according to Bland and Altman [14], defined as 1.96 times the standard
deviation of the differences in measurements. The RC of the automated measurements
with respect to the expert measurements is 4.7%. Automated segmentations initialized
by a second observer yield RC=5.2% with respect to the manual segmentations, and
RC=1.7% as compared to the first set of automated measurements.

4 Discussion and Conclusions

Segmentation methods based on linear statistical models, such as ASM, obtain good
results in many applications. In some cases however, a shape model based on statis-
tics alone is too specific, and a linear gray value model is not always able to find the
correct contour. We have presented an application — AAA segmentation— in which
conventional ASM can not find a suitable segmentation.



We have shown how shape models of elongated objects can be made more flexi-
ble by modeling the object axis and cross-sections independently. The idea of decou-
pling different types of shape variation and treating them as independent can be applied
more generally. For instance, when modeling vascular trees, different segments could
be modeled separately. In multiple object models, each object can be modeled sepa-
rately whereafter the objects are joined into one combined model. The general relations
between different objects are then retained, while the correlation between shape vari-
ation in different objects is removed. Such a model is more flexible but also increases
the risk of producing invalid shapes, like overlapping objects.

An orthonormal basis of smooth deformation modes was constructed using the
eigenvectors of small matrices. The approach presented is valid for tubular objects,
where the shape can be described by a stack of contours with an equal number of land-
marks in each contour. In arbitrary shapes, decoupling the deformation in x, y, and
z-direction would require computation of the eigenvectors of an n × n instead of an
3n× 3n matrix, still greatly reducing computation time.

In AAA segmentation, we used contours in the original CT slices to build the model,
and deformation is restricted to in-slice landmark displacements. We believe this ap-
proach is valid in the case of CTA images, which are in general highly anisotropic (in
the images used in this study the voxels are over 4 times larger in the z-direction). How-
ever, the presented methods can also be applied to reformatted slices perpendicular to
the object axis.

The improvement of the presented gray value model over the original ASM gray
value model is twofold. First, not only the appearance of the boundary but also the
appearance of points near the boundary is learned from the training set. Second, we do
not assume a Gaussian intensity profile distribution but estimate the distribution non-
parametrically with kNN probability density estimation. The latter is responsible for a
dramatic increase in computation time; a full segmentation took on average 25 seconds
on a 1.7 GHz Pentium PC when the original ASM gray value model was used and 450
seconds using the kNN model. If computation time is an issue the method could be
sped up by using fewer shifted examples and pruning the kNN tree, or by using other
classifiers [15]. For instance, a quadratic discriminant classifier could be used, which is
equivalent to extending the original ASM gray value modeling scheme to more classes.

In leave-one-out experiments on 23 datasets, the shape approximation error was
successfully reduced by modeling axis and cross-section deformation independently,
and by adding supplementary smooth deformation modes. The kNN appearance model
significantly outperforms the original one-class linear gray value model (p <0.00001).
Obtained volume errors with respect to expert segmentations are comparable to inter-
observer errors reported in the literature, while the inter-observer agreement for au-
tomated segmentation initialized by two different observers is better than for manual
segmentation.
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