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Quantitative Analysis of Pulmonary Emphysema
Using Local Binary Patterns
Lauge Sørensen*, Saher B. Shaker, and Marleen de Bruijne

Abstract—We aim at improving quantitative measures of em-
physema in computed tomography (CT) images of the lungs. Cur-
rent standard measures, such as the relative area of emphysema
(RA), rely on a single intensity threshold on individual pixels, thus
ignoring any interrelations between pixels. Texture analysis allows
for a much richer representation that also takes the local structure
around pixels into account. This paper presents a texture classifi-
cation-based system for emphysema quantification in CT images.
Measures of emphysema severity are obtained by fusing pixel pos-
terior probabilities output by a classifier. Local binary patterns
(LBP) are used as texture features, and joint LBP and intensity
histograms are used for characterizing regions of interest (ROIs).
Classification is then performed using a nearest neighbor classi-
fier with a histogram dissimilarity measure as distance. A 95.2%
classification accuracy was achieved on a set of 168 manually anno-
tated ROIs, comprising the three classes: normal tissue, centrilob-
ular emphysema, and paraseptal emphysema. The measured em-
physema severity was in good agreement with a pulmonary func-
tion test (PFT) achieving correlation coefficients of up to �

� �� in 39 subjects. The results were compared to RA and to a
Gaussian filter bank, and the texture-based measures correlated
significantly better with PFT than did RA.

Index Terms—Emphysema, local binary patterns (LBPs),
quantitative computed tomography (CT), texture analysis, tissue
classification.

I. INTRODUCTION

C HRONIC obstructive pulmonary disease (COPD) is a
growing health problem worldwide. In the United States

alone, it is the fourth leading cause of morbidity and mortality,
and it is estimated to become the fifth most burdening disease
worldwide by 2020 [1]. COPD is a chronic lung disease charac-
terized by limitation of airflow. It comprises two components:
small airway disease and emphysema, which is characterized
by gradual loss of lung tissue. Detection and quantification
of emphysema is important, since it is thought to be the main
cause of shortness of breath and disability in COPD.
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Fig. 1. Examples of different lung tissue patterns in CT shown with the window
setting ��������� HU [4]. (a) NT. (b) CLE. (c) PSE. The white area in the
left part of image (c) is the exterior of the lung.

The primary diagnostic tool for COPD is spirometry by
which various pulmonary function tests (PFTs) are performed
[1]. However, PFTs have a low sensitivity to emphysema and
are not capable of detecting early stages of COPD [2]. Another
diagnostic tool that is gaining more and more attention is com-
puted tomography (CT) imaging. CT is a sensitive method for
diagnosing emphysema, assessing its severity, and determining
its subtype, and both visual and quantitative CT assessment are
closely correlated with the pathological extent of emphysema
[3].

In this study, we focus on the assessment of emphysema in
CT images. Emphysema lesions, or bullae, are visible in CT im-
ages as areas of abnormally low attenuation values close to that
of air. In CT, emphysema can be classified into three subtypes,
or patterns, and we will adopt the naming and definitions used
in Webb et al. [4]. These subtypes are the following: centrilob-
ular emphysema (CLE), defined as multiple small low-attenu-
ation areas; paraseptal emphysema (PSE), defined as multiple
low-attenuation areas in a single layer along the pleura often sur-
rounded by interlobular septa that is visible as thin white walls;
and panlobular emphysema (PLE), defined as a low-attenuation
lung with fewer and smaller pulmonary vessels. Examples of
CLE and PSE, as well as normal tissue (NT), are shown in Fig. 1.

Common computerized approaches to emphysema quan-
tification in CT are based on the histogram of CT attenuation
values, and different quantitative measures of the degree of em-
physema can be derived from this histogram. The most common
measure is the relative area of emphysema (RA), also referred
to as emphysema index or density mask [3], which measures the
relative amount of lung parenchyma pixels that have attenuation
values below a certain threshold. Usually, thresholds in the
range to Hounsfield units (HU) are used. Measures
based on the attenuation histogram disregard the information
present in the morphology of the emphysema subtypes such as
shape and size distribution of bullae. This was exemplified in a
recent clinical study that reported discrepancies between visual
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scoring and RA for assessing the craniocaudal distribution of
the three emphysema subtypes [5].

One way to objectively characterize the emphysema mor-
phology is to describe the local image structure using texture
analysis techniques [6], [7]. Uppaluri et al. introduced the idea
of classifying emphysema in lung CT images using texture
features [8]. Several authors followed this idea and classified
regions of interest (ROIs) of various lung disease patterns
using different texture features, mostly measures on gray-level
cooccurrence matrices (GLCM), gray-level run-length matrices
(GLRLM), and on the attenuation histogram, and different
classifiers [9]–[18]. Other examples of texture features used
in the lung tissue classification literature are: the gray-level
difference method [17], [18]; discrete wavelet frame decompo-
sition using third-order B-splines [15]; convolving with partial
derivatives of the Gaussian and the Laplacian of the Gaussian
[12], [13]; gradient magnitude [16]; and fractal dimension [8],
[9], [14]. In some cases, shape, or geometric, measures are also
included in conjunction with the texture features [10], [13],
[16]. Most studies use a mix of rotation invariant and rotation
variant texture features, whereas the texture features used in
this study are solely rotation invariant.

Most of the studies on lung texture classification have one or
several explicit emphysema classes [8]–[11], [14]–[18]. Mul-
tiple emphysema classes are defined by subdividing according
to disease severity [14], [16] or emphysema morphology [11],
[17], [18]. Chabat et al. discriminate between CLE and PLE
[11], whereas Prasad et al. distinguish between different stages
of emphysema, ranging from diffuse to bullous emphysema
[17], [18]. The study described in this paper has two emphy-
sema classes defined based on morphology, namely, CLE and
PSE. PLE is not considered since only 2 out of 39 subjects
had PLE as leading pattern in the data used in the experiments.
The data come from a population of (ex-)smokers, and PLE
is known to be more prevalent in subjects with -antitrypsin
deficiency than in subjects with smoking-related COPD [2].

A trained classifier can be used for quantification by clas-
sifying all pixels in the lung field. In [9], [10], [13], [14],
[16]–[18], the full lung is classified either by labeling com-
plete ROIs [9], [13], [14] or by labeling individual pixels
[10], [16]–[18]. Xu et al. report the percentage of different
disease patterns present in a few subjects, but these quantitative
measures are not evaluated further [14]. Park et al. quantify
emphysema by a weighted sum of relative emphysema class
areas [16], and it is to our knowledge the only emphysema
based quantitative study on a group of subjects in the lung CT
texture analysis literature.

This paper proposes two new ideas in the area of lung texture
analysis in CT images. The specific application is emphysema
quantification, but the ideas are also applicable to other lung dis-
ease patterns. Preliminary versions of the study presented here
appeared in [19] and [20].

The first idea is to use local binary patterns (LBPs) originally
formulated by Ojala et al. [21] as lung texture features. LBP
unify structural and statistical information by a histogram of
LBP codes that correspond to microstructures in the image at
different scales. LBP have shown promising results in various

applications in computer vision and have successfully been ap-
plied in a small number of other medical image analysis tasks,
e.g., in mammographic mass detection [22] and magnetic res-
onance image analysis of the brain [23]. In [19], we showed
that histogram dissimilarity measures between LBP feature his-
tograms in a nearest neighbor classifier [24] can dis-
criminate between emphysematous tissue and NT.

The second idea is to fuse the posterior probabilities obtained
from a classification of all pixels in the lung field into quanti-
tative measures of emphysema severity. Texture-based classi-
fication allows for quantification of different emphysema sub-
types, which may be important in phenotyping emphysema for
increased understanding of COPD. Furthermore, texture fea-
tures may be less influenced by inspiration level and noise com-
pared to, e.g., RA, which uses intensity in single pixels. In [20],
we showed that this approach agrees well with the outcome of
PFTs, achieving a significant correlation. Two fusion schemes
are considered in this paper; mean class posterior (MCP) and
relative class area (RCA). The second fusion scheme, RCA, is
related to the fusion scheme in [16] that uses a weighted sum of
RCAs. The difference is that we consider each RCA individu-
ally.

The proposed system is evaluated in two ways; ROI classifi-
cation and emphysema quantification on subject level. A data set
comprising 2-D high-resolution CT (HRCT) slices with manu-
ally annotated ROIs is used for these purposes. The LBP fea-
tures are compared to two other sets of features, one based on
a Gaussian filter bank (GFB) and one comprising measures on
GLCM, GLRLM, and the attenuation histogram.

II. METHODS

The proposed system for emphysema quantification relies on
texture classification in local ROIs in the CT images. Three
types of texture features are considered, LBP, GFB, and a set
of features based on GLCM, GLRLM, and the attenuation his-
togram. Section II-A describes LBP and Section II-B describes
GFB. Measures on GLCM and GLRLM are the most commonly
used features in lung texture classification, and they are there-
fore not described in detail here. We refer to [6], [25] for a de-
tailed description and to [8], [11], [16]–[18] for examples of ap-
plications. Section II-C describes how the texture in the ROIs is
characterized by computing distributions of features, or feature
histograms, and Section II-D presents a combined measure of
histogram dissimilarity between the feature histograms, used to
discriminate ROIs with a classifier. Finally, Section II-E
describes how emphysema is quantified in the CT images by
fusing pixel posterior probabilities output by a classifier
trained on a small set of ROIs.

A. Local Binary Patterns

The LBP were originally proposed by Ojala et al. as a gray-
scale invariant measure for characterizing local structure in a
3 3 pixel neighborhood [26]. Later, a more general formula-
tion was proposed that further allowed for multiresolution anal-
ysis and rotation invariance [21]. We use the formulation given
in [21]. The LBP are obtained by thresholding samples in a local
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Fig. 2. Illustration of LBP. (a) The LBP filter is defined by two parameters; the
circle radius � and the number of samples � on the circle. (b) Local structure
is measured w.r.t. a given pixel by placing the center of the circle in the position
of that pixel. (c) Samples on the circle are binarized by thresholding with the
intensity in the center pixel as threshold value. Black is zero and white is one.
The example image shown in (b) has an LBP code of 124. (d) Rotating the
example image in (b) �� clockwise reduces the LBP code to 31, which is the
smallest possible code for this binary pattern. This principle is used to achieve
rotation invariance.

neighborhood with respect to the center pixel intensity and is
given by

(1)

where is an image, is the center pixel,
are

local samples taken at a radius around , and is the
Heaviside function. As long as the relative ordering among the
gray-scale values in the samples does not change, the output of
(1) stays the same; hence, LBP are invariant to any monotonic
gray-scale transformation. The application of the LBP filter
is illustrated in Fig. 2. Note that, by choosing a fixed sample
position on the circle as the “leading bit,” in this case the
right-most sample, the thresholded samples can be interpreted
as bits, and a bit binary number can be computed.

The LBP measure the local structure by assigning unique
identifiers, the binary number, to various micro-structures in the
image. Thus, LBP capture many structures in one unified frame-
work. In the example in Fig. 2(b), the local structure is a ver-
tical edge with a leftward intensity gradient. Other microstruc-
tures are assigned different LBP codes, e.g., corners and spots,
as illustrated in Fig. 3. By varying the radius and the number
of samples , the structures are measured at different scales,
and LBP allows for measuring large scale structures without
smoothing effects, as is, e.g., the case for Gaussian-based filters.
We expect emphysematous tissue to contain more edges and ho-
mogeneous dark areas compared to normal, healthy tissue. Fur-
thermore, the microstructures are expected to exist at different
scales and frequencies according to the severity of the disease
state.

Rotation invariant LBP are achieved by “rotating the circle”
until the lowest possible binary number is found

(2)

for . performs circular bit-wise
right shifts on the -bit binary number . When using (2), the
horizontal edge and the vertical edge in Fig. 3 are assigned the
same LBP code, namely, 31. We will use the LBP formulation
in (2) in all experiments.

Fig. 3. Various microstructures measured by LBP. The gray circle indicates
the center pixel. Black and white circles are binarized samples; black is zero
and white is one.

B. Gaussian Filter Bank

The second type of texture features are computed using a rota-
tion invariant GFB and are based on convolving the image with
the Gaussian function

(3)

where is the standard deviation, or scale.
Sluimer et al. used a similar GFB, comprising both rotation

variant and invariant filters [12], [13]. Since rotation invariant
LBP are used in this study, the GFB we compare with consists
of the rotation invariant filters from [12], [13]; Gaussian and
Laplacian of the Gaussian, augmented with two more rotation
invariant filters; gradient magnitude, which is also used on the
original data in [16], and Gaussian curvature.

Letting and denote the first-order derivatives of the
convolved image , and , and de-
note the second-order derivatives, the four base filters in the
GFB are as follows: the Gaussian function (3) itself, the Lapla-
cian of the Gaussian

(4)

gradient magnitude

(5)

and Gaussian curvature

(6)

C. Feature Histograms

Based on the feature values in an ROI, obtained either by
computing rotation invariant LBP (2) in all pixels in the ROI or
by applying one of the GFB filters (3), (4), (5), or (6), a feature
histogram, , is computed.

For LBP, the computed LBP codes are directly accumulated
into a histogram with the number of bins determined by the
number of samples . In the case of GFB, we employ an adap-
tive binning principle similar to that of [26]; the total feature
distribution across all ROIs in the training set is made approxi-
mately uniform. Consequently, densely populated areas in fea-
ture space are quantized with a high resolution while sparse
areas are quantized with a low resolution. The number of bins
is set to , where is the number of pixels in the ROI.

As noted previously, LBP are invariant to any monotonic
gray-scale transformation of the image. This is, however, not
always desirable when dealing with CT images, where values
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Fig. 4. Examples of feature histograms. (a), (d), (g), (j) are computed from
the NT ROI in Fig. 1(a), (b), (e), (h), (k) from the CLE ROI in Fig. 1(b), and
(c), (f), (i), (l) from the PSE ROI in Fig. 1(c). (a)–(c) Joint LBP and inten-
sity histograms for � � � and � � �. (d)–(f) LBP histograms for � � �

and � � �. (g)–(i) Gaussian function filter response histograms for � � ���.
(j)–(l) Gradient magnitude filter response histograms for � � �.

are measurements of a physical property of the tissue displayed
[12]. Therefore, we include intensity information in the feature
histogram by forming the joint histogram between the LBP
codes and the intensities in the center pixels. The intensities are
binned using the same adaptive principle as used for the GFB
filter values [26].

Examples of feature histograms computed from the three dif-
ferent ROIs in Fig. 1 are shown in Fig. 4. Only few bins contain
the mass in the LBP histograms, and these bins correspond to
different microstructures such as edges, corners, and spots, as
indicated with arrows in Fig. 4(d). One of the discriminating
bins when comparing the NT ROI to the CLE ROI is the edge
bin as expected, see Fig. 4(d) and (e). The joint LBP and inten-
sity histogram captures information about at which intensities
the different microstructures reside, thus improving discrimina-
tion of the NT ROI from the CLE ROI when, e.g., looking at the
edge bin in Fig. 4(a) and (b).

D. Classifier

The feature histograms are used to classify ROIs or center
pixels of ROIs. For this purpose, we use the classifier

[24] with the distance between two ROIs being a combined his-
togram dissimilarity between feature histograms. is the
natural classifier of choice when working in a distance represen-
tation of objects, and it is also the classifier employed in the LBP
literature [21], [26]. Furthermore, is a nonparametric clas-
sifier and therefore able to handle multimodal class distributions
in feature space, which might be the case in lung texture classi-
fication. For example, an emphysema class containing samples
from different disease stages might contain patterns of varying
bullae sizes and varying number of edges, giving rise to a mul-
timodal class distribution.

Each ROI is represented by a set of feature histograms. When
using LBP, the set comprises feature histograms that are mea-
sured with different radii for multiscale analysis. When using
GFB, the set comprises feature histograms measured with dif-
ferent filters at different scales. Dissimilarities between ROIs
are expressed as dissimilarities between feature histogram sets

where is the number of histograms, is a histogram
dissimilarity measure, and are individual feature his-
tograms. In this paper, we use negated histogram intersection
[27] as histogram dissimilarity measure

where and are histograms each with bins. In this
study, all feature histograms are normalized to sum to one, thus

.
We use a posterior probability estimator for the clas-

sifier that includes distances to prototypes in the estimation. A
principle similar to [28] is employed; the estimation is based on
the distance to the th nearest prototype of each class, where

is the number of prototypes of the majority class within the
nearest neighbors of . The posterior probability of class

given pixel is therefore given by

(7)

where is the number of classes, is the th nearest
prototype of class , and is the ROI centered on .

E. Emphysema Quantification

Prior to classification of the lung field, the lung parenchyma
pixels are segmented in the HRCT slice, using a combination
of thresholding and connected component analysis. Manual
editing was needed afterward in one third of the cases and
required simple outlining of a few of the larger airways. In
principle, automated methods such as [29], [30] could be used
here instead. We denote the obtained segmentation . Each
segmented lung parenchyma pixel is classified by classifying
the ROI centered on the pixel.
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It should be noted that pixels that are not part of the lung seg-
mentation are not classified, but they can still contribute to the
classification. For example, part of the exterior of the lung is in
the local neighborhood when classifying a pixel at the border of
the lung. In this way, all potentially relevant structural informa-
tion is incorporated, such as proximity to the border of the lung
or to the large vessels and airways.

The pixel probabilities are fused to obtain one measure for
the complete lung field that can be used for emphysema quan-
tification. There are several ways of doing this, e.g., averaging,
voting, or the maximum rule [31]. In this study, we evaluate av-
eraging of soft and hard classification results. The considered
quantitative measures for emphysema are the and the

. is given by

(8)

where is the number of lung parenchyma pixels in segmen-
tation and is obtained using (7). is given by

(9)

where denotes the Kronecker delta function.

III. EXPERIMENTS AND RESULTS

A. Data

The data come from an exploratory study carried out at the
Department of Respiratory Medicine, Gentofte University Hos-
pital [32] and consist of CT images of the thorax acquired using
General Electric (GE) equipment (LightSpeed QX/i; GE Med-
ical Systems, Milwaukee, WI, USA) with four detector rows.
A total of 117 HRCT slices were acquired by scanning 39 sub-
jects in the upper, middle, and lower lung. The CT scanning was
performed using the following parameters: in-plane resolution
0.78 0.78 mm, slice thickness 1.25 mm, tube voltage 140 kV,
and tube current 200 mAs. The slices were reconstructed using
a high-spatial-resolution (bone) algorithm.

Prior to CT imaging, the subjects underwent PFTs, and
both the forced vital capacity (FVC) and the forced expiratory
volume in one second were measured [33]. is
adjusted for age, sex, and height by dividing with a predicted
value according to these three parameters, thereby obtaining

% .
The 39 subjects were divided into three groups: nine healthy

lifelong nonsmokers (referred to as never smokers), ten smokers
without COPD (referred to as healthy smokers), and 20 smokers
diagnosed with moderate or severe COPD (referred to as COPD
smokers). The COPD diagnosis was based on the recorded PFTs
and done according to the Global Initiative for Chronic Obstruc-
tive Lung Disease criteria [1] as follows: no COPD, defined
as and % %; moderate
to severe COPD, defined as and %

% %. Of the 39 subjects, 19 were women and
20 were men. Table I summarizes the characteristics of the three
groups.

TABLE I
GROUP CHARACTERISTICS REPORTED AS MEAN VALUES, WITH STANDARD

DEVIATION IN PARENTHESES AND RANGE IN SQUARE BRACKETS.
� IS THE NUMBER OF SUBJECTS IN A GROUP

An experienced chest radiologist and a CT experienced pul-
monologist each assessed the leading pattern, either NT, CLE,
PSE, or PLE, in each of the 117 slices. Overall, the observers
agreed in 53% of the slices, and they agreed on the emphysema
class in 60% of slices where both decided on an emphysema
pattern.

168 nonoverlapping ROIs were annotated manually in 25
of the subjects, representing the three classes: NT (59 obser-
vations), CLE (50 observations), and PSE (59 observations).
The NT ROIs were annotated in never smokers, and the CLE
and PSE ROIs were annotated in healthy smokers and COPD
smokers within the area(s) of the leading emphysema pattern by
approximately marking the center pixel of the emphysematous
area. Square ROIs of a given width centered on the marked
pixel were subsequently extracted. PLE was excluded due to
underrepresentation in the data, only two subjects had PLE as
leading pattern. Therefore, we are dealing with the three classes

in all the experiments.

B. Feature and Parameter Selection

When using the GFB, feature selection is applied using the
sequential forward selection algorithm [24] for deciding which
filters at which scales to include. When using LBP, several com-
binations of radii for multiresolution analysis are evaluated. In
both approaches, different s in the classifier as well as
different ROI sizes are evaluated during training. In all cases,
parameters and feature sets are optimized based on validation
classification accuracy.

C. Classification of ROIs

Classification performance is evaluated by leave-one-
subejct-out error estimation on the set of manually annotated
ROIs. Six different approaches are evaluated and compared.

The ROIs are represented as points in a feature space, with
all features standardized to unit variance, in the first two ap-
proaches, and Euclidean distance in the feature space is used in
the classifier.

1) GFB1: The feature vector consists of the first four central
moments computed from histograms of GFB filter responses.
Standard histograms are used instead of applying the adaptive
binning approach described in Section II-C, and the four filters
described in Section II-B are used, resulting in a 16 scales
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TABLE II
ROI CLASSIFICATION ACCURACY AND �-VALUE FOR DIFFERENCE

WITH LBP2 ACCORDING TO MCNEMAR’S TEST

dimensional feature vector. This set of features resembles the
features used in [12] and [13].

2) Intensity, Cooccurrence, and Run-Length (ICR): The
feature vector consists of the following features: the first
four central moments of the intensity histogram; the GLCM
based measures contrast, correlation, energy, entropy, and
homogeneity [6], [25]; and the GLRLM based measures
short-run emphasis, long-run emphasis, gray-level nonunifor-
mity, run-length nonuniformity, and run percentage [6], [25].
The resulting feature vector is 14 dimensional. This set of
features resembles the features used in [8], [9], [11], [14], and
[16]–[18].

The remaining four approaches all use the methods described
in Sections II-C and II-D with different feature histograms.

3) INT: Intensity histograms.
4) GFB2: GFB filter response histograms.
5) LBP1: Basic rotation invariant LBP histograms.
6) LBP2: Joint 2-D LBP and intensity histograms.
In each leave-out trial, all ROIs from one subject are held out

and used for testing. The remaining subjects are separated into
a training set and a validation set. In this separation, balanced
class distributions are ensured by placing half the subjects, rep-
resenting one class in the training set and the rest in the vali-
dation set. The optimal parameter setting is learned using the
training and validation sets and can differ for each test subject.
Subsequently, the ROIs in the test set are classified using the op-
timal parameter setting and all the ROIs in the training set and
validation set as prototypes in the classifier.

In GFB1 and GFB2, the following scales are used for all fil-
ters: pixels. In ICR, GLCM and GLRLM
are computed using the orientations ( , , , ) and
the lengths pixels, and the following binnings of
intensity values are evaluated: number of bins. The
GLCMs are symmetric and mean GLCM measures across ori-
entation and length are used [11], [16]. GLRLM are computed
using the Gray Level Run Length Matrix Toolbox [34], and
mean GLRLM measures across orientation are used. In LBP1
and LBP2, the following radii and corresponding number of
samples are used: pixels and sam-
ples. Common parameters considered for all six approaches are
as follows: pixels and
number of neighbors in the classifier .

The estimated classification accuracies of the six approaches
are summarized in Table II. LBP2 performs best, achieving a
classification accuracy of 95.2%. However, it is not significantly
different , according to a McNemar’s test [35], from

TABLE III
CONFUSION MATRICES SHOWING THE TRUE LABEL (ROWS) VERSUS LABEL

ASSIGNED BY THE ��� CLASSIFIER (COLUMNS) FOR THE TWO BEST

PERFORMING APPROACHES

the second best approach, GFB2, which achieves an accuracy
of 94.0%. As expected, including intensity is important. This
is seen in the performance gain between LBP1 and LBP2. In
fact, intensity alone performs better than LBP alone, as seen
when comparing INT to LBP1. LBP2 performs significantly
better than the four approaches GFB1, ICR, INT, and LBP1

. We will focus on the two best performing ap-
proaches, GFB2 and LBP2, in the remaining part of Section III.

The confusion matrices in Table III show that LBP2 and
GFB2 generally agree on the class labels. Furthermore, GFB2
never mistakes the emphysema classes, and LBP2 only labels
a PSE pattern as CLE once. The agreement between the two
approaches is further investigated in Section III-D.

The parameter settings and filters that were most often se-
lected in the leave-one-subject-out error estimation, for LBP2
and GFB2, are shown in Table IV. The tendency is small scale
features, small ROIs, and small .

D. Parenchyma Classification

In this section, results of applying the trained classifiers to all
pixels within the lung fields are compared for LBP2 and GFB2.

Only one parameter setting is considered for each represen-
tation based on the most frequent parameters in Table IV. For
LBP2, we use

, and for GFB2, we use
. The set of annotated ROIs

serve as prototypes in the classifier. When classifying the
HRCT slices from a particular subject, all the ROI prototypes
coming from that same subject are left out in the classi-
fier.

Fig. 5 shows examples of the resulting posterior class proba-
bilities assigned by the classifiers in a never smoker HRCT slice
and a COPD smoker HRCT slice. The never smoker has many
high NT probability pixels assigned by both LBP2 and GFB2,
as seen in Fig. 5(c) and (d), whereas the COPD smoker has
many high CLE probability pixels and some high PSE proba-
bility pixels, see Fig. 5(i), (j), (m), and (n). For the shown COPD
smoker, the consensus reading of the leading pattern is CLE in
all three slices. The LBP2 posterior seems more localized than
the GFB2 posterior. See, e.g., the low-NT posterior area in the
anterior part of the left lung in the slice in Fig. 5(e) and (f) and
the high-CLE posterior area in the same positions in Fig. 5(i)
and (j).

Correlating the class posteriors shows a high degree of agree-
ment between LBP2 and GFB2; when
correlating of the two classifiers,

in the case of , and
in the case of . Furthermore, class label agreements
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TABLE IV
MOST FREQUENTLY SELECTED PARAMETERS AND FILTER COMBINATIONS FOR LBP2 AND GFB2 IN THE LEAVE-ONE-SUBJECT-OUT EXPERIMENTS IN

SECTION III-C. ONLY PARAMETERS AND FILTERS SELECTED IN AT LEAST 20% OF THE LEAVE-OUT TRIALS ARE SHOWN. OTHER GFB2 FILTERS THAT ARE

SELECTED TOGETHER WITH THE REPORTED GFB2 FILTER COMBINATIONS IN LESS THAN 20% OF THE INDIVIDUAL EXPERIMENTS ARE NOT SHOWN

between LBP2 and GFB2 in each lung parenchyma pixel are
shown in the confusion matrix in Table V. This result is based
on a hard classification obtained by applying the maximum a
posteriori rule in each pixel. The two classifiers generally are in
good agreement; in 86.3% of the pixels, the two classifiers agree
on the class label.

E. Emphysema Quantification

In this section, we evaluate the value of fusing pixel poste-
rior probabilities, computed using the proposed classification
system, into a single measure for emphysema.

The full lung classification results of Section III-D are
turned into quantitative measures of emphysema using
according to (8) and using according to (9). These mea-
sures are computed across the three HRCT slices representing a
subject. We evaluate the obtained measures by correlating with

% , which is one of the standard PFTs for diagnosing
subjects with COPD [1]. The common CT-based measure RA
is also included in the evaluation, in this case using a threshold
of HU [3], [5], [32] . The results are shown in
Table VI, where the NT-based measures achieve correlation
coefficients ranging from to . For compar-
ison, correlates significantly worse with %
than do the NT-based measures according to a
Hotelling/Williams test [36]. In the Hotelling/Williams test, we
correct for the difference in signs.

All measures, except LBP2- and GFB2-based ,
separate the group of COPD smokers from the combined group
of never smokers and healthy smokers according to a rank
sum test . The separation can also be seen for
LBP2-based in Fig. 6(a). The figure also shows that
the individual features of the joint LBP and intensity feature
histogram measure different properties of the parenchyma at
subject level. Using intensity alone, i.e., parenchyma density,
results in the picture, as shown in Fig. 6(b), and using LBP
alone, i.e., parenchyma micro-structures, results in the picture,
as shown in Fig. 6(c).

IV. DISCUSSION AND CONCLUSION

The proposed classification system using LBP2 achieves an
ROI classification accuracy of 95.2%, see Table II, with an

NT sensitivity and specificity of 97.3% and 93.2%, respec-
tively. This is better than using GFB or ICR, and is within the
75%–100% range of NT sensitivities and specificities reported
in the literature [9], [11]–[16]. The experiments revealed that
using LBP in isolation does not work well in the presented
application. This was to be expected, since LBP by design are
invariant to monotonic intensity transformations and therefore
discard the density information contained in the CT image
intensities. Including intensity information via the joint LBP
and intensity histogram combines complementary information
in the form of microstructures and densities. Hereby it is mea-
sured at which densities the different microstructures reside
which improves discrimination considerably. This is illustrated
when comparing Fig. 4(a) and (b) to (d) and (e), where the
differences between the joint histograms (a) and (b) are much
more obvious than between the LBP histograms (d) and (e).
Other feature sets, like GFB, also include intensity and hereby
also mix structure and density information. However, obtaining
a similar representation to LBP2 in GFB, i.e., joint histograms
of structure and density, would require histograms of much
higher dimensionality with one dimension for each type of
microstructure such as edge, blob, etc., potentially leading to
problems with overfitting in cases of limited number of training
samples.

The CT-based computerized quantitative measures of em-
physema are often evaluated by correlating the obtained CT
measures with other markers for disease, such as PFTs or
plasma biomarkers, in the clinical literature. A few examples
of such studies are: [32], [37]–[40]. In this paper, we have
performed a similar evaluation and correlated the proposed
quantitative measures with another marker for emphysema
in Section III-E, namely, % , and in general the
correlations were strong, up to . It is known that
PFTs are noisy measurements [41], and that they are affected
by other phenomena than emphysema, e.g., inflammation in
the airways. Still, some degree of agreement between PFTs
and CT-based emphysema measurements is expected. In the
future, we intend to further evaluate the proposed CT-based
emphysema measures by utilizing more metadata. For example,
measures derived from blood samples, other PFTs, or health
status questionnaires [42] could be used.
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Fig. 5. An HRCT slice from a never smoker and from a COPD smoker together with posterior probabilities computed in each lung parenchyma pixel. White is
high probability and black is low probability. (a), (b) Original HRCT slices shown with the window setting���������HU [4]. (c), (g), (k) LBP2-based posteriors
for the never smoker. (d), (h), (l) GFB2-based posteriors for the never smoker. (e), (i), (m) LBP2-based posteriors for the COPD smoker. (f), (j), (n) GFB2-based
posteriors for the COPD smoker. (a) Never smoker, (b) COPD smoker, (c) LBP2 NT posterior, (d) GFB2 NT posterior, (e) LBP2 NT posterior, (f) GFB2 NT
posterior, (g) LBP2 CLE posterior, (h) GFB2 CLE posterior, (i) LBP2 CLE posterior, (j) GFB2 CLE posterior, (k) LBP2 PSE posterior, (l) GFB2 PSE posterior,
(m) LBP2 PSE posterior, (n) GFB2 PSE posterior.

TABLE V
CONFUSION MATRIX BETWEEN GFB2 AND LBP2 ACROSS ALL SUBJECTS

FOR ALL LUNG PARENCHYMA PIXELS. THE NUMBERS REPORTED ARE IN

PERCENTAGE OF TOTAL NUMBER OF LUNG PARENCHYMA PIXELS

Park et al. previously performed emphysema quantification
based on a hard classification of the lung parenchyma pixels.
A weighted sum of the relative areas of mild end severe em-
physema was used, and they reported a correlation of
with % [16]. Based on the results of our experiments,
nothing conclusive can be stated about fusion of soft versus fu-
sion of hard classifications, i.e., (8) versus (9). Both methods
work well, and as seen in Table VI, all the NT-based measure-
ments correlate significantly with % with correlation

TABLE VI
CORRELATION OF CT-BASED EMPHYSEMA MEASURES WITH ��� %�	
�.

�-VALUES OF THE CORRELATIONS ARE SHOWN IN PARENTHESES
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coefficients in the range to . It should be noted
that in [16], the correlation between RA, using a threshold of

HU, and % is . In our data, agreement
between CT and PFT generally seems to be better with the cor-
relation between and % being . This
fact, as well as the fact that we are dealing with a broader range
of subjects compared to [16], could explain the difference in
correlation level.

Different features may capture different information in the
CT images, and though the per pixel posterior probabilities of
LBP2 and GFB2 are highly correlated, there may still be some-
thing to gain by combining the output of the two classifiers. This
was tested by combining the pixel posteriors of LBP2
and GFB2 with the sum rule and the maximum rule, respectively
[43], followed by posterior fusion of the combined pixel poste-
riors. These results did not show any significant improvement
in correlation with % , which indicates that the two
classifiers indeed capture similar information in the CT images.

In this study, we have done no preprocessing of the HRCT
slices prior to computing feature histograms. Instead, we have
relied on the filters to perform the necessary processing, e.g.,
noise smoothing in the GFB by selecting the appropriate or
picking up certain microstructures from the noisy background
in LBP by selecting the appropriate radius. It is up to the training
procedure to pick these settings.

Furthermore, all available information has been taken into ac-
count in the feature histogram estimation by including all pixels
in the ROIs instead of first excluding, e.g., the vessels [11], [14]
or the airways [14]. Thus, also pixels outside the lung fields
and pixels from nonparenchyma structures within the lungs con-
tribute. This can be seen as an implicit way of encoding context
information in the feature histograms, with the position being
“near the border of the lung” or “near the hilar area.” It may lead
to slight overestimation of PSE at the border, see Fig. 5, but in
practice, this should not be a real problem as long as the proto-
type set contains samples at the border representing all classes.
In our data, NT and CLE ROIs were mainly annotated in the cen-
tral parts of the lungs. Nevertheless, the proposed classification
system is capable of discriminating between NT and emphyse-
matous tissue within the lung, as seen in the confusion matrices
for LBP2 and GFB2 in Table III.

Fig. 6(a) reveals that very similar measures are obtained for
the never smokers and the healthy smokers. One might expect
the healthy smokers measures to be slightly lower than the never
smokers on the scale due to early stages of emphysema
not yet detectable by PFTs. Basing the measurements only on in-
tensity feature histograms results in the healthy smokers having
an even larger probability of NT, as seen in Fig. 6(b), indicating
a difference in density for the two groups. This corresponds
well with recent results indicating that lung parenchyma is more
dense in healthy smokers than in never smokers possibly due
to smoke-induced inflammation [40], [44]. On the other hand,
basing the measurements solely on LBP feature histograms re-
sults in a slight drift downwards, as seen in Fig. 6(c), suggesting
that there may be structural differences that can be captured at
an early stage by LBP. As described in Section II-A, LBP are
gray-scale invariant and therefore not affected by parenchymal
density changes. This also implies that the proposed classifica-

Fig. 6. ��� for all 39 subjects divided on the three groups; never smokers,
healthy smokers, and COPD smokers. The dashed lines are connecting the
means of the three groups. (a) LBP and intensity jointly, i.e., LBP2 based,
(b) Intensity alone, i.e., INT based, (c) LBP alone, i.e., LBP1 based.

tion system should be less sensitive to inspiration level as com-
pared to, e.g., .

Basing the discrimination of ROIs on dissimilarities between
sets of feature histograms, using a combined histogram dissim-
ilarity directly as distance in a classifier, works well in
this setting. Both LBP2 and GFB2 achieve good ROI classifica-
tion accuracies and high correlations with % . Using
full feature histograms differs from the common approach of
using measures derived from feature histograms, such as mo-
ments of filter response histograms or GLCM measures, as fea-
tures in a feature space [8]–[18]. Looking at Fig. 4, taking only
the first four moments of the GFB histograms could potentially
discard valuable information about the shape of the histograms
such as the presence of multiple mods. A previous comparative
study of texture features for classification reported similar find-
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ings on two standard texture data sets [26]. In this study, we
wanted to exploit the full feature histograms and therefore used
the classification framework with histogram dissimilarity
as distance, and LBP and GFB were shown to work very well in
this setting. It remains of course a possibility that in a different
classification scheme, relying on features rather than on dissim-
ilarity measures, a different feature set would perform as good
as or even better than LBP. Alternatively, histogram dissimilar-
ities could be applied within the dissimilarity-based classifica-
tion schemes proposed by Pekalska and Duin [45].

The experiments carried out in this study are all done on
HRCT slices, but the general framework could easily be ex-
tended to 3-D. However, no true extension of rotation invariant
LBP to 3-D exists. Two approximative extensions of LBP to 3-D
are presented in [46], with the specific application being tem-
poral texture data. The first approach forms a helical path in the
temporal direction. This idea could be applied in volumetric CT
by, e.g., forming helical paths in various directions and com-
bining the resulting LBPs. The second approach in [46] com-
putes 2-D LBPs in three orthogonal planes and combines these.

In conclusion, we propose to use texture measures such as
LBP for quantitative analysis of pulmonary emphysema in CT
images of the lung. ROI classification experiments showed
good classification performance, with an accuracy of 95.2%,
and quantitative measures of emphysema derived by fusing
posterior probabilities achieved high correlation with PFT, up
to . Overall, LBP seem to perform
slightly better than a rotation invariant GFB, although the
difference was not significant in our experiments.
correlated significantly better with pulmonary function than
the most common standard CT measure, RA, which suggests
that texture-based measures may be better indicators of the
degree of emphysema. In addition, LBP seem to pick up certain
microstructures that are more frequent in smokers, including
smokers who still have good lung function, than in people who
never smoked. This structural information improves discrimi-
nation in our experiments and may also improve sensitivity to
early changes in lung tissue integrity.
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