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s,Erasmus MC, Rotterdam, The NetherlandsABSTRACTA good problem representation is important for a pattern re
ognition system to be su

essful. The traditionalapproa
h to statisti
al pattern re
ognition is feature representation. More spe
i�
ally, obje
ts are representedby a number of features in a feature ve
tor spa
e, and 
lassi�ers are built in this representation. This is also thegeneral trend in lung paren
hyma 
lassi�
ation in 
omputed tomography (CT) images, where the features oftenare measures on feature histograms. Instead, we propose to build normal density based 
lassi�ers in dissimilarityrepresentations for lung paren
hyma 
lassi�
ation. This allows for the 
lassi�ers to work on dissimilarities be-tween obje
ts, whi
h might be a more natural way of representing lung paren
hyma. In this 
ontext, dissimilarityis de�ned between CT regions of interest (ROI)s. ROIs are represented by their CT attenuation histogram andROI dissimilarity is de�ned as a histogram dissimilarity measure between the attenuation histograms. In thissetting, the full histograms are utilized a

ording to the 
hosen histogram dissimilarity measure.We apply this idea to 
lassi�
ation of di�erent emphysema patterns as well as normal, healthy tissue. Twodissimilarity representation approa
hes as well as di�erent histogram dissimilarity measures are 
onsidered.The approa
hes are evaluated on a set of 168 CT ROIs using normal density based 
lassi�ers all showinggood performan
e. Compared to using histogram dissimilarity dire
tly as distan
e in a k nearest neighbor
lassi�er, whi
h a
hieves a 
lassi�
ation a

ura
y of 92.9%, the best dissimilarity representation based 
lassi�eris signi�
antly better with a 
lassi�
ation a

ura
y of 97.0% (p = 0.046).Keywords: 
lassi�er design, lung, COPD, emphysema, dissimilarity representation, earth movers distan
e1. INTRODUCTIONThe traditional approa
h to statisti
al pattern re
ognition is feature representation. More spe
i�
ally, obje
tsare represented by a number of features in a feature ve
tor spa
e, and 
lassi�ers are built in this representation.1This is also the general trend in lung paren
hyma 
lassi�
ation.2�6 Duin et al. motivated the idea of basing
lassi�
ation dire
tly on distan
es between obje
ts, thereby 
ompletely avoiding features.7 Instead of fo
usingon �nding good features for des
ribing obje
ts, the fo
us is moved to �nding good dissimilarity measures for
omparing obje
ts. Dissimilarity representations may be preferable to the traditional feature representationapproa
h, e.g., when there is not enough expert knowledge available to de�ne proper features or when data ishigh dimensional.8Working in a dissimilarity representation of obje
ts, a k nearest neighbor (kNN) 
lassi�er,9 whi
h is applieddire
tly on distan
es between obje
ts, is a natural and simple 
hoi
e. However, there exist te
hniques that make itpossible to use other 
lassi�ers su
h as normal density based 
lassi�ers on dissimilarity data.8 The general idea isto represent data by a distan
e matrix 
ontaining pair-wise dissimilarities between obje
ts, also 
alled dissimilarityrepresentation. From this representation, a feature spa
e is derived in whi
h traditional pattern re
ognitionte
hniques then 
an be applied. Embedding of a Eu
lidean dissimilarity representation into a Eu
lidean spa
evia 
lassi
al s
aling is one way of doing this.10 A se
ond approa
h is to treat the dissimilarity representation as anew data set with the rows being observations and the 
olumns being dimensions in a dissimilarity spa
e. Ea
hFurther author information:Lauge Sørensen: E-mail: lauges�diku.dk, Telephone: (+45) 35 32 07 39



dimension in this spa
e measures the dissimilarity to a parti
ular training prototype, and the set of prototypes is
alled the representation set.8 A third approa
h that will not be 
onsidered further in this paper, is embeddingin a pseudo-Eu
lidean spa
e in the 
ase of a non-Eu
lidean dissimilarity representation.10, 11Compared to a density based 
lassi�er built in a dissimilarity spa
e, kNN has high 
omputational 
omplexityand large storage requirements. In kNN, distan
es to all training set obje
ts need to be 
omputed when 
lassifyingnovel patterns, and therefore the entire training set needs to be stored. In a dissimilarity spa
e, a few obje
ts
an be sele
ted from the training set as prototypes in the representation set, keeping the dimensionality lowand only requiring storage of the representation set and the trained 
lassi�er. A kNN 
lassi�er makes the
lassi�
ation de
ision based only on a lo
al neighborhood, i.e., the k 
losest prototypes, whi
h makes it sensitiveto noise. Density based 
lassi�ers in a dissimilarity representation are more global, in the sense that parametersof Gaussian fun
tions are estimated o�-line using all available dissimilarity training data while still working in alow dimensional dissimilarity spa
e or embedding, whi
h has a natural smoothing e�e
t. Also, the 
lassi�
ationis based on a weighted 
ombination of the dissimilarities between the novel pattern and the prototypes. Theseweights are estimated using the entire training set and thus �essential� prototypes are given more weight in the
lassi�
ation de
ision. A density based 
lassi�er is therefore expe
ted to a
hieve better generalization whendealing with a small and noisy data set, espe
ially in 
ases of normal distributed 
lasses.Previously, we investigated the use of feature histograms for lung disease pattern 
lassi�
ation in 
omputedtomography (CT) using a histogram dissimilarity measure dire
tly as distan
e in a kNN 
lassi�er, whi
h showedpromising results.12 In the literature, measures of histograms, su
h as moments of �lter response histograms andmeasures on 
o-o

urren
e matri
es, are often used as features in a feature spa
e when 
lassifying lung diseasepatterns in CT.2�6 Using only the �rst few moments of a histogram might dis
ard valuable information. Instead,using the full histogram for 
lassi�
ation may improve 
lassi�
ation a

ura
y.13 This paper investigates thepossible bene�t of building 
lassi�ers in a histogram dissimilarity representation 
ompared to using histogramdissimilarity dire
tly as distan
e in a kNN 
lassi�er. In light of the previous dis
ussions, we see several possiblebene�ts of using a density based 
lassi�er trained in a histogram dissimilarity representation for lung paren
hyma
lassi�
ation. To our knowledge, this has not been investigated before.Pekalska et al. have applied dissimilarity representations in numerous standard data sets, in
luding hand-written digits, polygons, road signs, and 
hromosome band pro�les.8, 14 Dissimilarity representations have alsobeen used in various other pattern re
ognition appli
ations. Trosset et al. used dissimilarity representationsfor dis
riminating patients with Alzheimer's disease from normal elderly subje
ts in magneti
 resonan
e images.The dissimilarities were based on hippo
ampal dissimilarity obtained from image registration deformations.15In this work, we represent images by histograms and 
onstru
t dissimilarity representations based on histogramdissimilarities, whi
h is an approa
h also taken by other authors. Bruno et al. used a dissimilarity representationbased on symmetrized Kullba
k-Leibler divergen
e between RGB histograms for image retrieval.16 Pa
lik et al.investigated the use of dissimilarity representations in hyperspe
tral data 
lassi�
ation using various histogramdissimilarity measures.17The spe
i�
 appli
ation of this paper is 
lassi�
ation of emphysema subtype and normal tissue in regions ofinterest (ROI), based on the CT attenuation histogram. Emphysema is a major 
omponent of 
hroni
 obstru
tivepulmonary disease (COPD) and is 
hara
terized by gradual loss of lung tissue. COPD is a growing healthproblem worldwide. In the United States alone, it is the fourth leading 
ause of morbidity and mortality, and itis estimated to be
ome the �fth most burdening disease worldwide by 2020.18 Methods for reliable 
lassi�
ationof emphysema in lungs are therefore of interest, sin
e they may form the basis for 
omputer-aided diagnosis.CT imaging is gaining more and more attention as a diagnosti
 tool for COPD, and it is a sensitive methodfor diagnosing emphysema, assessing its severity, and determining its subtype. Both visual and quantitative CTassessment are 
losely 
orrelated with the pathologi
al extent of emphysema.19 Emphysema is usually 
lassi�edinto three subtypes, or patterns, in CT,20 and the two of the three subtypes we fo
us on in this paper arethe following: 
entrilobular emphysema (CLE), de�ned as multiple small low-attenuation areas; and paraseptalemphysema (PSE), de�ned as multiple low-attenuation areas in a single layer along the pleura often surroundedby interlobular septa visible as thin white walls.



2. METHODSThis se
tion des
ribes the methodology that we use. Se
tion 2.1 brie�y des
ribes how the attenuation histogramsare 
omputed from the ROIs. Se
tion 2.2 des
ribes three di�erent histogram dissimilarity measures used for
omparing histograms. Se
tion 2.3 des
ribes two dissimilarity representation approa
hes: the dissimilarity spa
eapproa
h and an embedding approa
h based on 
lassi
al s
aling. Both are based on a distan
e matrix that in turnis based on a histogram dissimilarity measure. Finally, Se
tion 2.4 des
ribes two 
lassi�ers, a linear dis
riminantand a quadrati
 dis
riminant 
lassi�er, that both will be trained and tested in the dissimilarity representations.2.1 Histogram estimationWe represent ea
h ROI by its attenuation histogram. The histogram is estimated using non-linear binning by
hoosing the histogram bins su
h that the total distribution of the attenuation values in the training set isapproximately uniform.13 All histograms are normalized to sum to one.2.2 Histogram dissimilarity measuresThree histogram dissimilarity measures L are 
onsidered: one based on histogram interse
tion (HI),21 earthmovers distan
e (EMD),22 and the L2-norm. HI is given by
HI(H, K) =

Nb
∑

i=1

min(Hi, Ki)where H ∈ R
Nb and K ∈ R

Nb are histograms ea
h with Nb bins. HI(·, ·) is a similarity measure, and adissimilarity measure based on this 
an be obtained by
LHI(H, K) = 1 − HI(H, K). (1)All histograms 
onsidered in this work sum to one, thus LHI(·, ·) ∈ [0, 1]. EMD is given by
LEMD(H, K) =

Nb
∑

i=1

Nb
∑

j=1

CijFij (2)where C ∈ R
Nb×Nb is a ground distan
e matrix and F ∈ R

Nb×Nb is a �ow matrix. The �ow matrix 
ontains theoptimal �ows obtained by solving the transportation problem of moving the mass of H su
h that it mat
hes themass of K. The L2-norm is given by
L2(H, K) =

√

√

√

√

Nb
∑

i=1

(Hi − Ki)2. (3)2.3 Dissimilarity representationsComputing all pairwise dissimilarities L between the obje
ts from the set A = {a1, . . . , an} and the set B =
{b1, . . . , bm} we obtain the n × m dissimilarity, or distan
e, matrix8, 14

DL(A,B) =







L(a1, b1) . . . L(a1, bm)... . . . ...
L(an, b1) . . . L(an, bm)






. (4)Using (4) with either (1), (2), or (3) as histogram dissimilarity, we obtain three di�erent distan
e matrix repre-sentations of the data DLHI

(A,B), DLEMD
(A,B), and DL2

(A,B).



2.3.1 Dissimilarity spa
eOne way to utilize the distan
e matrix (4) is by extra
ting a representation set of prototypes R. Given a trainingset T , this approa
h sele
ts a set of obje
ts R ⊆ T from T . All obje
ts in T are represented in a dissimilarityspa
e, where the i'th dimension 
orresponds to the dissimilarity with prototype Ri ∈ R, i.e., we 
ompute
DL(T ,R).8 Sele
ting a representation set is 
on
eptually similar to sele
ting a limited number of prototypesfor the kNN 
lassi�er. However, where the prototypes de�ne the kNN 
lassi�er independently of the remainingtraining set, R de�nes a dissimilarity spa
e in whi
h the entire training set is represented and used to train a
lassi�er. The �nal 
lassi�er is therefore expe
ted to be less sensitive to the spe
i�
 
hoi
e of prototypes.There are di�erent ways of 
hoosing the representation set, e.g., random sele
tion or feature sele
tion methods,in this 
ontext sear
hing for prototypes. For simpli
ity, we will only 
onsider random prototype sele
tion in thiswork. Random sele
tion has previously been found to give reasonable results.102.3.2 EmbeddingInstead of sele
ting prototypes, another approa
h is to embed DL(T , T ) in a ve
tor spa
e and redu
e thedimensionality of this spa
e. Standard inner produ
t based te
hniques 
an be applied in this spa
e.A DL(T , T ) based on an Eu
lidean dissimilarity measure L 
an be perfe
tly embedded in an Eu
lidean spa
eby 
lassi
al s
aling, whi
h is a distan
e preserving linear mapping.10 It is based on the positive de�nite Grammatrix

G = −
1

2
J(DL ⊙ DL)Jwhere ⊙ denotes entry-wise matrix multipli
ation and the 
entering matrix J = I− 1

n11
T where n is the numberof training set obje
ts and 1 = [1, . . . , 1]T ∈ R

n. G is fa
torized using an eigende
omposition
G = QΛQTwhere Λ is a diagonal matrix 
ontaining eigenvalues ordered by des
ending magnitude and Q is a matrix 
on-taining the 
orresponding eigenve
tors. For k ≤ n non-zero eigenvalues, a k-dimensional Eu
lidean embeddingis then obtained by
E = QkΛ

1

2

k (5)where Qk ∈ R
n×k 
ontains the �rst k leading eigenve
tors and Λk ∈ R

k×k 
ontains the square roots of the
orresponding eigenvalues.When DL(T , T ) is based on a non-Eu
lidean dissimilarity measure, B is not positive de�nite and therefore hasnegative eigenvalues. In this 
ase, an Eu
lidean embedding 
annot be obtained using (5) sin
e the 
omputationsrely on square roots of the eigenvalues. This problem 
an be addressed by 
onsidering only positive eigenvaluesand 
orresponding eigenve
tors in (5).10Two of the histogram dissimilarity measures used in this work, (1) and (2), are non-Eu
lidean and one, (3),is Eu
lidean. When using Eu
lidean distan
e, i.e., (3), 
lassi
al s
aling re
overs the original n× Nb data matrixfrom the n × n distan
e matrix up to lo
ation, re�e
tion, and rotation.2.4 Classi�ersTwo 
lassi�ers are evaluated in the di�erent dissimilarity representations: a linear dis
riminant 
lassi�er (LDC)and a quadrati
 dis
riminant 
lassi�er (QDC).1, 9 These 
lassi�ers have previously shown to perform well indissimilarity spa
es.14 Both are density based 
lassi�ers using multivariate Gaussian fun
tions to represent
lasses ωi = {µi, Σi}

Gi(x; µi, Σi) =
1

(2π)N/2|Σi|1/2
exp

(

−
1

2
(x − µi)

T Σ−1

i (x − µi)

)



where N is the dimensionality of the input spa
e and x ∈ R
N is a position in the input spa
e. In LDC, equal
lass 
ovarian
e matri
es Σ are assumed resulting in the following linear dis
riminant fun
tion

gi(x) = x
T Σ−1µi −

1

2
µT

i Σ−1µi + log P (ωi) (6)where Σ and the 
lass sample means µi are estimated in the dissimilarity representation obtained from DL(T , T )and P (ωi) is the 
lass prior. In QDC, ea
h 
lass 
ovarian
e matrix Σi is estimated separately resulting in thefollowing quadrati
 dis
riminant fun
tion
gi(x) = −

1

2
log |Σi| −

1

2
(x − µi)

T Σ−1

i (x − µi) + log P (ωi). (7)The density based 
lassi�ers assigns 
lass ωi to observation x a

ording to the maximum dis
riminant fun
tion
ĝ(x) = arg max

i
gi(x). (8)3. EXPERIMENTS AND RESULTSThe data used for the experiments originates from a set of thin-sli
e CT images of the thorax. CT was performedusing GE equipment (LightSpeed QX/i; GE Medi
al Systems, Milwaukee, WI, USA) with four dete
tor rows,using the following parameters: In-plane resolution 0.78 × 0.78 mm, 1.25 mm sli
e thi
kness, tube voltage 140kV, and tube 
urrent 200 milliampere (mA). The sli
es were re
onstru
ted using a high spatial resolution (bone)algorithm. A population of 25 patients, 8 healthy non-smokers, 4 smokers without COPD, and 13 smokersdiagnosed with moderate or severe COPD a

ording to lung fun
tion tests18 were s
anned in the upper, middle,and lower lung, resulting in a total of 75 CT sli
es.Visual assessment of the leading pattern, either NT, CLE, or PSE, in ea
h of the 75 sli
es was done individuallyby an experien
ed 
hest radiologist and a CT experien
ed pulmonologist. 168 non-overlapping ROIs of size 31×31pixels were annotated in the sli
es, representing the three 
lasses: NT (59 observations), CLE (50 observations),and PSE (59 observations). The NT ROIs were annotated in the non-smokers and the CLE and PSE ROIs wereannotated in the smokers, within the area(s) of the leading pattern.Figure 1 shows an ROI from ea
h of the three 
lasses, together with the CT sli
es in whi
h they were annotated,and Figure 2 shows the attenuation histograms of all 168 ROIs estimated using the non-linear binning prin
ipledes
ribed in Se
tion 2.1.3.1 Visualizing dissimilarity spa
esThree prototypes are sele
ted at random, one from ea
h 
lass, and the resulting pair-wise dissimilarity spa
esare inspe
ted by plotting the dissimilarities between all observations and one prototype versus the dissimilaritiesbetween all observations and se
ond prototype. The results 
an be seen in Figure 3. The 
lass separation isalready quite good using only two prototypes and it 
an be expe
ted to be even better when using more thantwo prototypes. In some 
ases, there is a tenden
y to degenerate behavior of the resulting spa
es, e.g., in Figure3(i) where the PSE samples almost reside on a line in the two-dimensional dissimilarity spa
e.3.2 Visualizing embeddingsFigure 4 shows the eigenvalues derived in the embedding pro
ess for DLHI

, DLEMD
, and DL2

on our data. Asseen in Figure 4(a) and 4(b), the non-Eu
lidean property of LHI and LEMD is revealed by the presen
e ofnegative eigenvalues. The number of eigenvalues that are signi�
antly di�erent from zero is small in all three
ases, showing that the intrinsi
 dimensionality of the three dissimilarity representations of the data is ratherlow.Figure 5 shows two-dimensional embeddings obtained by using the two eigenve
tors with the largest positiveeigenvalues. The 
lass separation is generally good in all three representations.



(a) CT sli
e with leading NTpattern. (b) CT sli
e with leading CLEpattern. (
) CT sli
e with leading PSEpattern.
(d) NT ROI. (e) CLE ROI. (f) PSE ROI.Figure 1. Examples sli
es and ROIs annotated in the same sli
es. The ROI in 1(d) is from 1(a) et
.
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) PSE.Figure 2. Attenuation histograms estimated from the data. Individual histograms are shown in gray and the meanhistogram is shown in bla
k.
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.Figure 3. Examples of dissimilarity spa
es obtained using representation sets with two random prototypes.
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.Figure 4. Eigenvalues derived in the embedding pro
ess sorted by absolute value. In 4(a) and 4(b) the eigenvalues aredivided in a positive and a negative part.
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.Figure 5. Two-dimensional embedding of DL using the two eigenve
tors with the largest positive eigenvalue.3.3 Classi�er stabilityWe use feature 
urves for inspe
ting the stability of the dissimilarity representation based 
lassi�ers as a fun
-tion of the number of dimensions in the representation. That is, as a fun
tion of the number of prototypesin R and number of retained eigenve
tors in E. The feature 
urves are 
omputed based on thirty repeatedrandom 50%/50% data splits. In these splits, balan
ed 
lass distributions are ensured by pla
ing half the ROIsrepresenting one 
lass in the training set and the other half in the test set. In ea
h split, the dimension range

N = [1, 2, . . . , 30] is used in turn by sele
ting N random prototypes in the dissimilarity spa
e approa
h and Npositive eigenve
tors in the embedding approa
h, in both 
ases from the training set.Figure 6 shows the resulting prototype 
urves. QDC is more sensitive to the number of dimensions 
omparedto LDC. This phenomenon 
an be explained by the in
reasing number of parameters in QDC, whi
h requiresmore training samples for reliable estimation.3.4 Classi�er a

ura
yThe 
lassi�
ation a

ura
y is evaluated using leave-one-out error estimation on the 168 ROIs, and the following
lassi�er setups are evaluated:
• kNN using histogram dissimilarity measure L as distan
e. k = [1, 2, . . . , 5], L = {LHI , LEMD, L2}.
• Classi�er C in a dissimilarity spa
e de�ned by random representation set sele
tion from distan
e matrix

DL. C = {LDC, QDC}, DL = {DLHI
, DLEMD

, DL2
}.

• Classi�er C in an embedding of a distan
e matrix DL. C = {LDC, QDC}, DL = {DLHI
, DLEMD

, DL2
}.
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e using DL2
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.Figure 6. Feature 
urves of dissimilarity representation based LDC and QDC. Standard deviations are shown as dashedlines. The asterisks mark the minimum of ea
h 
urve. The performan
e of the best kNN 
lassi�er, for k = [1, . . . , 5],using the training set as prototypes and the histogram dissimilarity in question as distan
e is also shown for referen
e asa horizontal line.



Classi�er LHI LEMD L2kNN using L as distan
e 1NN 91.7 92.9 92.3
2NN 91.1 91.1 91.7
3NN 92.9 91.1 92.3
4NN 92.3 90.5 91.7
5NN 91.1 89.3 91.1Dissimilarity spa
e LDC 88.6 (±1.0) 88.3 (±1.7) 87.6 (±1.3)
QDC 93.1 (±1.1) 90.1 (±2.0) 93.3 (±1.2)Embedding LDC 91.1 97.0 86.3
QDC 94.1 95.2 95.2Table 1. Results of the leave-one-out evaluation. The reported performan
e of the dissimilarity spa
e experiments is anaverage of ten repeated leave-one-out experiments where the representation set is drawn at random ea
h time. The samerandom representation set is used for all tested 
on�gurations. The standard deviations of these experiments are shownin parenthesis.The number of bins in the non-linear attenuation histogram is 
hosen as Nb = ⌊ 3

√

Np⌋, where Np is the numberof pixels in the ROI. In 
al
ulating LEMD, the ground distan
e matrix, C in (2), is 
onstru
ted su
h that thedistan
e between two neighboring bins the attenuation histograms is one. More generally, the ground distan
ebetween bin i and bin j is Cij = |i − j|. Further, we use the EMD implementation by Rubner.23 The LDC andQDC 
lass priors, P (ωi) in (6) and (7), are estimated from data. The dimensionality of the dissimilarity spa
esin all 
lassi�er setups is, somewhat arbitrarily, �xed to seven. All dissimilarity representation based 
lassi�ersperform reasonably well at this dimensionality a

ording to the feature 
urves in Figure 6. The experiments are
arried out in Matlab using the PRTools toolbox.24In general, all the 
lassi�ers perform well, see Table 1, with 
lassi�
ation a

ura
ies in the range 88.3%−97.0%.Using the dissimilarity spa
e approa
h with randomly 
hosen prototypes generally performs worse than usingkNN with histogram dissimilarity as distan
e dire
tly. However, the embedding approa
h shows very promisingresults, espe
ially when LEMD is used as histogram dissimilarity. The best estimated 
lassi�
ation a

ura
y of97.0% is a
hieved using LDC in the approximate embedding of DLEMD
, and this is signi�
antly better than thebest kNN with histogram dissimilarity as distan
e a

ording to a M
Nemar's test25 (p = 0.046).4. DISCUSSION AND CONCLUSIONSThe best dissimilarity representation based 
lassi�er a
hieves a 
lassi�
ation a

ura
y of 97.0%, and this is signif-i
antly better (p = 0.046) than the best kNN 
lassi�er with histogram dissimilarity as distan
e, whi
h a
hievedan a

ura
y of 92.9%. Generally, the embedding based 
lassi�ers perform slightly better than both the kNNand the dissimilarity spa
e 
lassi�ers. Further, dissimilarity spa
e based QDC, using only seven prototypes,performed similar to kNN. These results suggest that building 
lassi�ers in a dissimilarity representation, espe-
ially by embedding, is bene�
ial in the demonstrated appli
ation. The improved a

ura
y 
an be due to severalfa
tors. Firstly, a density based 
lassi�er built in a dissimilarity representation is more global, making use of allavailable training data in the 
lassi�
ation de
ision, as opposed to a kNN 
lassi�er, whi
h 
lassi�es only based onthe k nearest prototypes. Se
ond, in the embedding, the 
lasses seem to be approximately normal distributed,see Figure 5, whi
h �ts well with normal density based 
lassi�ers like LCD and QDC.A

ura
ies previously reported in the literature on lung paren
hyma 
lassi�
ation in CT in
luding at leastone type of emphysema, and using measures of feature histograms as features in a feature spa
e, are generallylower and lie in the range 76% − 93, 5%.2�6 These results are not dire
tly 
omparable due to di�eren
es in thedata, the 
hoi
e of 
lasses, et
. Nevertheless, the high a

ura
ies of our experiments indi
ate that using the fullfeature histogram is bene�
ial and that a dissimilarity representation on histogram dissimilarities is a good wayof utilizing the full feature histogram information.



In this work, we evaluated the dissimilarity spa
e approa
h by drawing random prototypes for simpli
ity.However, prototype sele
tion 
ould be used instead, as in,14 whi
h 
ould improve the performan
e of the repre-sentation set approa
h. Another possibility would be to draw the prototypes at random on 
lass-level su
h thatan equal amount of prototypes from ea
h 
lass are present in the representation set.QDC, and to some degree also LDC, showed unstable behavior in high dimensional dissimilarity spa
es andembeddings, as seen in the feature 
urves in Figure 6. This problem 
ould be addressed by regularizing theestimated 
ovarian
e matri
es, allowing a larger number of dimensions to be used.9 This 
ould possibly improvethe 
lassi�
ation a

ura
y.A natural next step would be to try dissimilarity representations based on other feature histograms than theattenuation histogram. For example, feature histograms des
ribing lo
al stru
ture like lo
al binary patterns12or other types of features previously used in lung paren
hyma 
lassi�
ation.2�6 Combining the attenuationhistogram and feature histograms des
ribing lo
al stru
ture in a dissimilarity representation might improveperforman
e.In 
on
lusion, we explore the use of normal density based 
lassi�ers built in a dissimilarity representation forlung paren
hyma 
lassi�
ation. Two di�erent dissimilarity representation approa
hes are 
onsidered; embeddingby 
lassi
al s
aling and the dissimilarity spa
e approa
h, and dissimilarity representations based on di�erenthistogram dissimilarity measures are tried out. Two 
lassi�ers, LDC and QDC, are evaluated in the dissimilarityrepresentations, and the best dissimilarity representation based 
lassi�er performed signi�
antly better thanusing histogram dissimilarity dire
tly as distan
e in a kNN 
lassi�er. A histogram dissimilarity representationallows for utilizing full feature histograms in 
lassi�
ation, and through this representation, normal densitybased 
lassi�ers 
an be trained on histogram dissimilarity data. Further, sophisti
ated histogram dissimilaritymeasures, like the earth movers distan
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