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a b s t r a c t

This paper presents a method for airway tree segmentation that uses a combination of a trained airway
appearance model, vessel and airway orientation information, and region growing. We propose a voxel
classification approach for the appearance model, which uses a classifier that is trained to differentiate
between airway and non-airway voxels. This is in contrast to previous works that use either intensity
alone or hand crafted models of airway appearance. We show that the appearance model can be trained
with a set of easily acquired, incomplete, airway tree segmentations. A vessel orientation similarity mea-
sure is introduced, which indicates how similar the orientation of an airway candidate is to the orienta-
tion of the neighboring vessel. We use this vessel orientation similarity measure to overcome regions in
the airway tree that have a low response from the appearance model. The proposed method is evaluated
on 250 low dose computed tomography images from a lung cancer screening trial. Our experiments
showed that applying the region growing algorithm on the airway appearance model produces more
complete airway segmentations, leading to on average 20% longer trees, and 50% less leakage. When com-
bining the airway appearance model with vessel orientation similarity, the improvement is even more
significant ðp < 0:01Þ than only using the airway appearance model, with on average 7% increase in
the total length of branches extracted correctly.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Chronic obstructive pulmonary disease (COPD) is among the
leading causes of death and disability in the world, tending to be
even more widespread in the future (Murray and Lopez, 1996;
Rabe et al., 2007). Measurement of airway lumen dimension and
wall thickness, as can be obtained from computed tomography
(CT) images, play a significant role in the analysis and understand-
ing of COPD in various studies (Nakano et al., 2000; Berger et al.,
2005; Coxson and Rogers, 2005), where measurements from the
smaller and higher generation airways are especially important
(Lee et al., 2008). The success of such studies relies heavily on
the availability of accurate and automated methods for airway tree
segmentation. However, most airway tree segmentation methods
are still limited to the larger and more visible airways, therefore
there is an immediate need for a better airway tree segmentation
method. Moreover, the lungs are anatomically divided into subre-
gions based on the structure of the airway tree. This makes airway
tree segmentation a useful starting point for tasks such as the seg-
ll rights reserved.
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mentation of lobes (Kuhnigk et al., 2003; Ukil et al., 2006; Zhou
et al., 2006) and pulmonary segments (Mori et al., 2008). Seg-
mented airway trees can also be used as landmarks for guiding reg-
istration processes (see for instance Li et al. (2008)), resulting in a
more accurate and natural transformation for applications such as
disease progression monitoring (Gorbunova et al., 2008).

The general approach to segmentation of the airway tree in-
volves variants of region growing applied on the image intensity
(Mori et al., 1996; Sonka et al., 1996; Kiraly et al., 2002; Schlathöl-
ter et al., 2002; Aykac et al., 2003; Kitasaka et al., 2003; Singh et al.,
2004; Tschirren et al., 2005). The assumption is that in CT images,
the airway lumen is dark and surrounded by brighter structures,
i.e. airway walls followed by lung parenchyma. The main problem
with this approach is that there often exist small regions, where
part of the airway wall is not visible and the airway lumen has
intensities similar to the surrounding lung tissue, due to noise or
pathologies such as emphysema. This results in ‘leakage’ in the re-
gion growing process in which surrounding lung regions are
wrongly labeled as part of the airway tree.

One direct way to reduce leakage is to introduce prior knowl-
edge of the geometry of the airway tree into the region growing
algorithm. Mori et al. (1996) proposed to monitor the change in
volume of the labeled region to detect leakage, and use the highest
threshold without any leakage detected to segment the entire tree.
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Later works focused on the idea of stopping the segmentation lo-
cally where leakage occurs, while allowing the segmentation pro-
cess to continue in other regions (Schlathölter et al., 2002;
Kitasaka et al., 2003; Tschirren et al., 2005; van Ginneken et al.,
2008). Detection of leakage via the radius of propagating fronts
from the fast marching algorithm was introduced in Schlathölter
et al. (2002). van Ginneken et al. (2008) replaced the fast marching
with a sphere-constrained region growing and investigated a mul-
ti-threshold scheme. Both Kitasaka et al. (2003) and Tschirren et al.
(2005) proposed to use geometrical properties within a volume of
interest derived from previously detected airways, where the for-
mer used the area of cross-sections, and the latter used the topol-
ogy of the thinned structure for leakage detection. Singh et al.
(2004) proposed information gain as a region growing criteria to
avoid leakage, where the local topology of the labeled region
around a candidate voxel is implicitly included into the gain.

Leakage may also be avoided by improved differentiation be-
tween airway lumen and surrounding lung tissue. The current pa-
per falls in this category. The key idea is to base the decision in the
region growing not only on the intensity of a single voxel, but also
on the information from the surroundings. Sonka et al. (1996) used
the proximity of airways and vessels as one of the criteria for re-
gion growing. Various morphological operators designed specifi-
cally for detecting airways have also been investigated (Pisupati
et al., 1996; Kiraly et al., 2002; Aykac et al., 2003). Fetita et al.
(2004) coupled morphological operators with an energy based
reconstruction method that takes into account the appearance of
a bronchial tree. A combination of fuzzy logic rules and 2D tem-
plate matching for segmenting airways was presented in Mayer
et al. (2004). Ochs et al. (2007) presented a pattern recognition
technique to classify various structures in lung CT images, includ-
ing airways, on the basis of training points that were hand picked
by experts. Graham et al. (2008) presented an airway segmentation
algorithm that detects tube parts throughout the image, where the
final segmentation is obtained by combining the detected tubes
using a graph search technique.

The contribution of this paper is twofold. Firstly, we introduce
an airway appearance model that automatically learns the charac-
teristic appearance of the airways and the surrounding tissues
from a set of segmented example images. The core of this appear-
ance model is a classifier that is trained to differentiate between
airway and non-airway voxels using a set of local image descrip-
tors. We show that good results can be achieved without the need
for high quality and complete airway tree segmentations as train-
ing data. The idea to use voxel classification for airway segmenta-
tion is similar to Ochs et al. (2007). However our appearance model
differs in the choice of classifier and in the way the training sam-
ples are extracted, where we use random samples extracted from
easily obtainable low quality airway tree segmentations instead
of hand picked training points as described in Ochs et al. (2007).

Secondly, we propose to incorporate a segmented vessel tree to
further improve the performance of the voxel classification-based
appearance model. The fact that airways are accompanied by arter-
ies is well known, and has previously been used in both airway and
vessel segmentation (Sonka et al., 1996; Pisupati et al., 1996;
Bülow et al., 2005). Vessels are especially useful for airway seg-
mentation in CT because of its better visibility, as shown in Sonka
et al. (1996). In our work, we extend this idea to using the orienta-
tions between vessels and airways, similar to Bülow et al. (2005)
who used it for artery–vein separation. This exploits the fact that
every airway branch is accompanied by an artery, and that both
structures have similar orientation, which to our knowledge has
not been applied to the segmentation of airway trees. The final seg-
mentation is obtained with a 3D region growing algorithm based
on a decision function that combines both the airway appearance
model and the relationship between airways and arteries.
Early versions of this work were presented in Lo and de Bruijne
(2008) and Lo et al. (2008). The current paper offers an extended
evaluation and introduces a multi-scale approach to vessel orienta-
tion similarity. The article is organized as follows: We start by
explaining the training of the airway appearance model in Sec-
tion 2. Section 3 presents the various steps involved in computing
the vessel orientation similarity measure. The segmentation
framework that combines both the airway appearance model and
the vessel orientation similarity is presented in Section 4. Section 5
presents the results of a set of experiments on 250 low-dose CT
images. Discussion of the results from our experiments, compari-
son with other related works, and suggestions for possible
improvements are presented in Section 6. Finally a conclusion is
presented in Section 7.
2. Classification based airway appearance model

We propose an airway appearance model that is based on voxel
classification. A potential drawback of such a classification-based
appearance model is that it requires segmented training data,
which may be difficult to obtain. In this work, an easily obtainable
manual segmentation is used for training instead, which is incom-
plete but leakage free. The construction of this manual segmenta-
tion as well as steps taken to compensate for its incompleteness
during the training process are explained in the following. This is
followed by a description of the extraction of training samples,
which focus on the smaller airways. Finally the choice of the clas-
sifier and its training process are presented.
2.1. Incomplete manual segmentation as a basis for training

Ideally, a gold standard obtained from hand-tracing by one or
multiple human experts should be used for the training of a classi-
fication-based appearance model. However, such a gold standard is
in general not available for airway trees, due to the extreme
amount of manual labor involved. Fortunately, incomplete but
leakage free airway tree segmentation can easily be obtained inter-
actively, which we will show is sufficient to train our appearance
model.

An intensity based region growing algorithm was used to obtain
the manual segmentations needed, where a seed point within the
trachea as well as an intensity threshold were determined manu-
ally. The highest threshold possible without causing any leakage
was selected for each of the training images individually. This typ-
ically results in an over conservative segmentation that has many
missing branches. However, the ‘background’ region directly sur-
rounding such a conservative segmentation will always contain
airway voxels. To exclude likely airway voxels trained as back-
ground, a second ‘leaked segmentation’ was obtained using a
threshold slightly higher than the one used for the manual seg-
mentation, which results in more and often longer airway
branches, but also with some leakage. The voxels that were marked
in the leaked segmentation denote uncertain regions that may be
either airway or background, and were excluded from the training
process. Fig. 1 shows an example of the manual and leaked
segmentation.

Training was performed using two classes: the airway class and
the non-airway class. The airway class consists of all voxels that
were labeled in the manual segmentations, excluding the trachea,
left and right main bronchi. The non-airway class was limited to
voxels within the lung fields and close to the airways. The lung
fields were extracted using thresholding and morphological
smoothing, similar to Hu et al. (2001). The region within the lung
fields that is close to the airways were obtained by dilating the
manual segmentation with a sphere of radius Rdilate. The non-air-



Fig. 1. Surface renderings of the interactively obtained segmentations used for training.
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way class then consists of all voxels within this dilated region not
marked by the leaked segmentation.

Only a fraction fs of the voxels belonging to the airway class was
used as training samples, excluding the trachea and the left and
right bronchi. This results in a total of Ns ¼ fsV training samples,
where V is the total number of airway class voxels in the manual
segmentation with trachea, and both left and right main bronchi
excluded. The same number of training samples were also ex-
tracted from the non-airway class. In order to prevent the large
number of voxels in the larger airways from dominating the
appearance model, we sample evenly along the distance from the
main bronchi. The distance from a voxel to the main bronchi is de-
fined as the shortest distance measured within the segmented tree,
which was obtained by applying the fast marching algorithm (Tsi-
tsiklis, 1995; Malladi and Sethian, 1996) on the manual segmenta-
tion with the main bronchi as seeds.

The sampling process was performed by first grouping the vox-
els based on their distance from the main bronchi in bins of width
W, and then randomly sampling a total of Nb ¼ NsW=Dmax training
samples from each bin, where Dmax is the maximum distance be-
tween a voxel in the manual segmentation to the main bronchi.
In order to prevent a bin from being sampled too densely, only a
fraction fb (�fs) of all voxels belonging to the bin were used as
samples for extraction. Finally, samples were extracted by starting
from the bin furthest away from the main bronchi. If the required
number of samples from a bin was larger than the number of sam-
ples available in the bin itself, the remaining samples were ex-
tracted from the next available bin of shorter distance.

2.2. Airway probability

The training samples of Section 2.1 were used to train a classi-
fier to differentiate between voxels belonging to the airway and
non-airway class. Any classifier that outputs a posterior probability
or other soft classification can be used here, but in this work we
choose the k nearest neighbor (KNN) classifier (Cover and Hart,
1967; Duda et al., 2001). An initial feature set of local image
descriptors was computed from the training samples, which con-
sisted of spatial derivatives up to and including the second order,
eigenvalues of the Hessian matrix (k1; k2 and k3, where
jk1jP jk2jP jk3j), determinant and trace of the Hessian matrix,
Frobenius norm of the Hessian matrix, and combinations of Hes-
sian eigenvalues that measure tube, plate and blobness
ðjk2=k1j; jk3=k1j; ðjk1j � jk2jÞ=ðjk1j þ jk2jÞ; jk3j=

ffiffiffiffiffiffiffiffiffiffiffiffi
jk1k2j

p
Þ. The partial

derivatives of the image were computed at multiple scales by con-
volving the image with the partial derivatives of the Gaussian ker-
nel (Weickert et al., 1997), and the features were standardized to
zero mean and unit variance.

Sequential floating forward feature selection (Pudil et al., 1994)
was used to find an optimal set of image descriptors that maxi-
mizes the area under the receiver operating characteristic (ROC)
curve of the classifier. To this end, the training samples were ran-
domly partitioned into two parts to compute the ROC curve: one
third for training of the classifier and two thirds for validation.
We constructed the final KNN classifier using the optimal combi-
nation of features and all training samples.

With the constructed KNN classifier, for each voxel we can now
estimate the posterior probability of it belonging to the airway
class, given a set of optimal features~x, using:

pðAj~xÞ ¼ KAð~xÞ
K

ð1Þ

where A is the airway class, KAð~xÞ is the number of neighbors
around~x belonging to the airway class, obtained among the K near-
est neighbors.

3. Obtaining vessel orientation similarity

The vessels were first segmented from the lung fields using a
multi-scale Hessian eigen analysis approach. The scale for calculat-
ing the Hessian matrix was selected for each voxel independently
using the scale normalized (Lindeberg, 1998) Frobenius norm of
the Hessian matrix:

xðriÞ ¼ r2
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1ðriÞ2 þ k2ðriÞ2 þ k3ðriÞ2

q

where the local vessel scale, rv , was then obtained by selecting the
smallest scale that corresponds to a local maximum of x across
scales. Using the Hessian eigenvalues at scale rv , the following cri-
teria were used to evaluate whether a voxel was part of a vessel or
not:

� k1; k2 < 0 (Brightness)
� x P Tx (Contrast)
� ðjk1j � jk2jÞ=ðjk1j þ jk2jÞ < T1 (Tubeness 1)
� ðjk1j � jk3jÞ=ðjk1j þ jk3jÞ > T2 (Tubeness 2)

where a voxel was labeled as vessel when all four criteria were sat-
isfied. The brightness criterion ensures that only voxels that were
brighter than their surroundings were selected, the contrast crite-



Fig. 2. An example of a segmented vessel tree.

Fig. 3. Block diagram of the segmentation framework.
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rion reduces the effect of noise by ensuring a certain minimum
contrast between the voxel and its surroundings, and finally the
two tubeness criteria require vessels to locally resemble bright,
solid cylinders. Within a solid bright tubular structure, k1 and k2

correspond to the principal curvatures along the directions perpen-
dicular to the tube axis, and k3 corresponds to the tube axis. Hence,
the eigenvalues within a tubular structure have a relationship of
jk1j � jk2j � jk3j, resulting in a value near zero for the tubeness 1
criterion and a value near one for the tubeness 2 criterion.

Segmentation using the vessel criteria often results in addi-
tional small, isolated regions due to noise. A connected component
analysis using a 6-connected neighborhood scheme was employed
in order to remove these small isolated regions, where components
with volumes less than Vmin voxels were discarded. Fig. 2 shows an
example of the vessel segmentation. Finally, the vessel centerlines
were obtained using the 3D thinning algorithm presented in Wang
and Basu (2007).

The vessel orientation at the centerline voxels was obtained as
the eigenvector corresponding to k3 computed at the vessel scale
rv . This measure is less sensitive to noise and inaccuracies in the
vessel segmentation than the orientation obtained directly from
the centerline itself. The orientations of the airways were also ex-
tracted the same way as the orientations of the vessels, but in con-
trast to vessels, we calculated the multi-scale Hessian matrix on
the airway probability (1), where airways appears as solid, bright
tube structures.

Given h as the angle between the local tube orientation at an air-
way candidate voxel and the orientation measured at the centerline
of a vessel nearest to it, we use s ¼ jcosðhÞj as vessel orientation sim-
ilarity measure. When the two orientations are similar, then s ’ 1,
and when the orientations are perpendicular, then s ’ 0.

4. Segmentation framework

We obtain the airway tree segmentation using a 3D region
growing algorithm, with a connectivity of 6-connected neighbors
and a decision function that combines both the airway appearance
model of Section 2 and the vessel orientation similarity of Section 3.
The trachea, left and right main bronchi were automatically seg-
mented and used as seeds for the region growing algorithm.
Fig. 3 shows a block diagram of the proposed segmentation
framework.
4.1. Preprocessing

A set of seed points within the trachea was first obtained auto-
matically by searching for a dark elliptical object in the top few
slices of a volumetric CT image. This set of seed points was then
used to extract the trachea and the main bronchi using a fast
marching based algorithm that detects bifurcations. This algorithm
is based on the work by Schlathölter et al. (2002), where we use
only the bifurcation detection of the original algorithm for prepro-
cessing (refer to Appendix A for details). The algorithm was made
to process voxels with intensity value below �900 HU, which was
chosen slightly higher than the intensity of air in order to cope
with noise and possible artifacts within the trachea. To only extract
up to the left and right main bronchi, the algorithm was made to
stop after extraction of all first generation branches.
4.2. Airway segmentations

The trachea and the left and right main bronchi obtained in Sec-
tion 4.1 were used as seed points in a region growing process to ex-
tract the remainder of the airway tree, using the airway probability
and vessel orientation similarity measures. Here, the vessel orien-
tation similarity was used as a means to lower the threshold on air-
way probability in regions with low airway probability according
to the appearance model, but with local tube orientation that is
similar to the orientation of nearby vessels. Three thresholds were
introduced for this purpose: upper probability threshold Tu, lower
probability threshold Tl, and vessel orientation similarity threshold
Ts. All voxels with an airway probability larger than or equal to Tu

were accepted automatically. For voxels with airway probability
between Tu and Tl, the decision was made based on the vessel ori-
entation similarity and Ts. The decision function for the acceptance
of a candidate voxel is defined as

DðpðAj~xÞ; sÞ ¼
1; pðAj~xÞP Tu

1; Tu > pðAj~xÞP Tl and s P Ts

0; otherwise

8><
>:

ð2Þ

where pðAj~xÞ is the airway probability computed from (1), and s is
the vessel orientation similarity of the candidate voxel. The voxel
is labeled as an airway when DðpðAj~xÞ; sÞ ¼ 1.
5. Experiments and results

Experiments were conducted on 250 low-dose CT images
(120 kV, 40 mAs) from 250 different subjects enrolled in the Dan-
ish Lung Cancer Screening Trial (DLCST) (Pedersen et al., 2009),
where participants were current or former smokers at an age be-
tween 50 and 70 years. All images had a slice thickness of 1 mm
and in-plane voxel size ranging from 0.72 to 0.78 mm. Three differ-
ent datasets were used:
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Dataset 1: Images from 32 randomly selected subjects. For these
images, the leakage free manual segmentations and
the leaked segmentations, as described Section 2.1,
were made for training purpose.

Dataset 2: Images from 18 subjects with moderate to severe
emphysema (an average of 24.25% of the lung volume
has intensity below �950 HU). For these images, obvi-
ous leakage already occurred using intensity based
region growing at the minimum threshold of
�1000 HU.

Dataset 3: Images from 200 randomly selected subjects.

The performance of appearance model based region growing
was evaluated with and without vessel orientation similarity and
was compared to that of region growing based on intensity alone
for all three datasets.

The objective of the experiment on dataset 1 is to study the
feasibility of the proposed voxel classification approach, which
is trained using a manual segmentation that was incomplete
but leakage free. Dataset 2 investigates the ability of the proposed
method to avoid leakages that are unavoidable using intensity
alone. The experiment conducted on the dataset 3 shows the gen-
eral performance of the proposed method on a large set of
images.

5.1. Parameter settings

KNN classification was performed using the ANN library for
approximate nearest neighbor searching (Arya et al., 1998). A
neighborhood of K ¼ 21 was used, and the approximation error
eps was set to zero to turn off the approximation part of the algo-
rithm. For the extraction of training samples, as described in Sec-
tion 2.1, a dilation radius Rdilate ¼ 5 mm was used in order to
include both the airway walls and some surrounding lung tissues
of the small airways. The fraction of voxels sampled was set to
fs ¼ 0:05, the bin width for the sample extraction process was
set to W ¼ 3, and the fraction of voxels used as samples for
extraction in each bin was fb ¼ 0:5. A total of seven scales, distrib-
uted exponentially between 0.5 mm and 3.5 mm were used to
compute the features. The same scales were also used to segment
the vessels in Section 3. A contrast threshold Tx ¼ 100, and tube-
ness measure thresholds T1 ¼ T2 ¼ 0:5 gave acceptable vessel
segmentation results for our application. Vmin ¼ 20 voxels was
used to filter off the small isolated regions in the segmented ves-
sel tree.

Suitable settings for the probability thresholds Tu and Tl, and
the vessel orientation similarity threshold Ts were selected auto-
matically using the leakage detection algorithm as described in
Appendix A. This algorithm, derived from Schlathölter et al.
(2002) and van Ginneken et al. (2008), is used to compute the
tree length (TL) and percentage of leakage voxels (LVP). We de-
fine TL as the total length of all correct branches excluding the
trachea. LVP is defined as the percentage of leakage voxels among
all labeled voxels, with the trachea and the left and right main
bronchi excluded. The probability thresholds Tu and Tl were var-
ied over 21 different values (with 0 excluded), which was equiv-
alent to the number of neighbors K used for the KNN classifier.
The vessel orientation similarity threshold Ts was varied over
21 different values ranging from 0 to 1. A total of 4011 different
combinations of thresholds were tested. The threshold combina-
tion selected was the one where further increase in the LVP will
not give any significant increase in the TL, with a maximum al-
lowed LVP of 5%. Only images from the training set were involved
in selecting the threshold settings. The airway probability for
each image was obtained from a KNN classifier constructed in a
leave-one-out manner.
5.2. Comparison to manual segmentation

A twofold cross-validation experiment was conducted on the 32
images of dataset 1, where the subjects were randomly separated
into two groups of 16 images each. The first group was used as train-
ing set for selecting the features, constructing the KNN classifier and
determining the thresholds that were to be applied to the second
group and vice-versa. Because of the lack of a ground truth, true po-
sitive and false positive rate based analysis is insufficient to evaluate
the results of the experiments. We therefore also detect leakage
using the modified Schlathölter algorithm, as described in Appendix
A, for evaluation purpose. We report the TL and LVP as described in
Section 5.1, as well as the branch count (BC), which is the number
of correct branches excluding the trachea. As the modified Schlathöl-
ter algorithm is prone to being too sensitive and ended up rejecting
true airway branches, detected leakage that overlapped with the
manual segmentation was added back into the segmentation to re-
duce the number of true airway branches rejected.

We compare three different segmentation approaches: region
growing on intensity, region growing on airway probability, and
the proposed approach of using both airway probability and vessel
orientation similarity. The threshold for region growing using
intensity was determined based on the training set using the opti-
mal threshold selection procedure described in Section 5.1, from a
range of intensities between �1000 HU and �900 HU. The thresh-
old for using airway probability alone was obtained by selecting
the best performing threshold settings when Tu ¼ Tl and Ts ¼ 0.

Table 1 shows the average results from the cross-validation
experiments, given as true positive rate (TPR = TP/(TP + FN)), false
discovery rate (FDR = FP/(FP + TP)), BC, TL, and LVP, where TP, FP
and FN are true positives, false positives and false negatives respec-
tively. The airway probability based methods have significantly
higher TPR than the intensity based region growing. The combina-
tion of airway probability and vessel orientation similarity results
in significantly longer TL ðp < 0:01Þ than using only airway proba-
bility, with no significant increase in LVP ðp ¼ 0:33Þ. The average
LVP is the highest for the experiment with intensity based region
growing, which is in part caused by two cases of severe leakage
with LVP >97%. Figs. 4 and 5 show the surface renderings and slice
view of three cases of segmented airways using the different meth-
ods, with two common cases and one case where intensity regions
growing results in severe leakage.
5.3. Effects of parameter settings

To investigate the impact of the parameters related to the air-
way appearance model, the cross-validation experiment in Sec-
tion 5.2 was repeated with varying parameter settings. Three
main parameters were considered, which were the number of
nearest neighbors K, dilation radius Rdilate and sampling bin width
W. These parameters were varied from their original values in Sec-
tion 5.1 one at a time. To simplify comparison and isolate the ef-
fects of the appearance model, the thresholds were chosen equal
to those used in Section 5.2 for the region growing based on the
appearance model and without vessel orientation similarity, thus
with Tu ¼ Tl and Ts ¼ 0. Table 2 shows the average results of the
different parameter settings.
5.4. Leakage avoidance and performance on large dataset

The 32 images of dataset 1 were used to train the classifier and
to select the thresholds for processing datasets 2 and 3. As there
were no manual segmentations available for the test data, we re-
port the BC, TL and LVP as computed directly using the modified
Schlathölter algorithm. Unfortunately, this also means that there



Table 1
Average results from twofold cross-validation experiment with dataset 1.

TPR (%) FDR (%) BC TL (mm) LVP (%)

Intensity 90.41 7.43 101.12 1347 6.19
Airway probability 98.40 21.62 150.44 1939 2.40
Airway probability + vessel orientation similarity 98.68 24.94 161.44 2084 2.95

Fig. 4. Surface renderings of results of three different subjects from the twofold cross-validation experiment, along with the TL from the different results. From left to right:
surface renderings of segmentation results using intensity, using airway probability, using both airway probability and vessel orientation similarity. Pre-segmented trachea,
left and right main bronchi are shown in white, TP, FP and FN are shown in green, blue and yellow respectively. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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will be more overestimation in the LVP as compared to the Sections
5.2 and 5.3, due to the lack of manual segmentation.

Table 3 shows the average results for dataset 2, which contains
images from 18 subject with different degree of emphysema,
where leakage occurs at �1000 HU. The minimum and maximum
LVP, and the number of cases with LVP exceeding 10% are also pre-
sented to give a better indication of the amount of leakage occur-
ring in the different methods. Fig. 6 shows an example of the
results obtained by the different methods.

All three methods were applied to the 200 screening images in
dataset 3, with the average TL, BC and LVP shown in Table 4. We
also visually inspected the surface renderings of all results from



Fig. 5. Axial view images of three different subjects from the twofold cross-validation experiment. From left to right: segmentation results using intensity, using airway
probability, and using both airway probability and vessel orientation similarity.

Table 2
Results from a series of experiments conducted using different parameter settings for
the construction of the appearance model. Changed parameters are indicated in bold.

K Rdilate W TPR (%) FDR (%) TL (mm) LVP (%)

21 5 3 98.40 21.62 1939 2.40
11 5 3 97.78 20.52 1911 1.60
31 5 3 98.48 21.47 1906 2.08
21 2.5 3 98.58 18.89 1851 4.92
21 10 3 98.58 24.13 1938 2.59
21 5 10 98.31 19.13 1852 1.95
21 5 20 98.63 25.84 1966 7.35

Table 3
Average results from 18 cases in dataset 2, with severe leakage for intensity based
region growing at �1000 HU.

TL
(mm)

BC LVP (min–max) (%) LVP >
10%

Intensity 2057 151.33 76.76 (5.22–98.94) 16
Airway probability 2377 174.28 12.77 (0.35–89.65) 4
Airway probability + vessel

orientation similarity
2590 193.17 28.79 (0.47–97.20) 6
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the proposed method that combines both airway appearance mod-
el and vessel orientation similarity. Obvious leakage were observed
in only eight cases, all of which were correctly identified by the
leakage detection algorithm. We also observed some obvious fal-
sely detected leakages in five cases, where a whole subtree of true



Fig. 6. Surface renderings of results from a subject with emphysema. From left to right: surface renderings of segmentation results using intensity, using airway probability,
and using both airway probability and vessel orientation similarity. Leakages are marked in yellow. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Table 4
Average results from 200 cases in dataset 3.

TL
(mm)

BC LVP
(%)

Intensity 1401 99.26 13.29
Airway probability 2012 146.39 2.23
Airway probability + vessel orientation similarity 2115 154.11 4.54
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airway branches was classified as leakage by the modified
Schlathölter algorithm. Fig. 7 shows results of four different sub-
jects from this dataset from the proposed method.
6. Discussion

This paper investigates whether:

1. Local image descriptors can improve upon intensity based air-
way segmentation.

2. A trained appearance model is feasible.
3. Inclusion of co-orientation between vessels and airways can

improve results.

A simple 3D region growing framework is used with no further
geometrical constraints. Airway probability estimates based on lo-
cal image descriptors as well as vessel orientation similarity are
incorporated in this framework and the performance gain com-
pared to intensity region growing is measured.

Table 1 shows that the methods that use the classifier based
appearance model perform better in terms of true positive rate
and tree length than intensity based region growing. The voxel
classification based methods resulted in higher false discovery rate
compared to intensity based method, but it must be noted that a
slightly higher false discovery rate may actually be desirable in
our case, as new branches found that are not in the manual seg-
Fig. 7. Surface renderings of results from four different subjects from the large dataset
yellow regions are regions classified as leakages by the modified Schlathölter algorithm
referred to the web version of this article.)
mentation are labeled as false positives as well. Upon visual
inspection, the majority of ‘false positives’ from the appearance
based methods in our experiments turned out to be valid airways
that were missing in the manual segmentation. An example of this
is shown in Fig. 5. This is further verified by the modified
Schlathölter algorithm, where we observe a large difference be-
tween false discovery rate and percentage of leakage voxels in Ta-
ble 1, with over 20% in false discovery rate compared to less than
5% in percentage of leakage voxels. This suggests that the majority
of the false positives in the voxel classification based methods are
actually real airways. For the intensity based region growing meth-
od, the false discovery rate (7.43%) is only slightly higher than per-
centage of leakage voxels (6.20%).

Results from our experiments on the three dataset in Tables 1, 3
and 4 all showed a similar trend, with the proposed method having
the highest tree length and branch count, followed by region grow-
ing with airway probability, and with region growing with inten-
sity having the lowest tree length and branch count. The
appearance model based region growing methods are also less
prone to leakage, and is capable of avoiding leakages that are
unavoidable by region growing with intensity. This is shown in Ta-
ble 3, where the appearance model based methods clearly have
less percentage of leakage voxels and also less cases with severe
leakage (LVP > 10%), as compared to region growing with intensity.
6.1. Sensitivity to parameter settings

As mentioned earlier in Section 5.3, the threshold for the airway
probability used for each fold of the experiment were fixed to those
used in Section 5.2 to simplify comparison and isolate the effects of
the appearance model. Therefore, the threshold settings used may
not be optimal for the parameter settings used in Table 2. Nonethe-
less, the overall true positive rate and tree length as observed in
Table 2 are still quite high, with a minimum of 97.78% and
1851 mm respectively. However, it was observed that the percent-
age of leakage voxels varies quite a bit, with a maximum of 7.35%.
obtained using appearance model and vessel orientation similarity measure. The
. (For interpretation of the references to colour in this figure legend, the reader is
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It should be noted that all, except for a single case, have percentage
of leakage voxels of less than 5%, which to our experience is well
within acceptable range. The high tree length and low percentage
of leakage voxel over most of the tested parameter settings sug-
gests that the appearance model performs quite well for a wide
range of parameters.

Varying the number of nearest neighbors K in the appearance
model has very little effect on the performance, resulting in a slight
decrease in tree length of no more than 30 mm, and with percent-
age of leakage voxels remaining well below 3%. Performance de-
grades when the dilation radius Rdilate for extracting non-airway
samples becomes too small. Since the over conservative, region
growing based segmentation used for training underestimates
the lumen, a small value of Rdilate results in a large number of actual
airway lumen samples being labeled as ‘non-airway’ in the train-
ing. On the other hand, if the Rdilate becomes too large, then non-air-
way samples will be taken from voxels far away from the airway
walls, which are less relevant for discriminating between airway
lumen and background. A suitable value of Rdilate ensures that sam-
ples are taken from the airway walls as well as the nearby back-
ground. A sharp increase in percentage of leakage voxels is
observed when taking a large bin width W in extracting samples
along the tree. The reason is that samples from the large airway
branches start to dominate the appearance model, causing the
appearance model to be less sensitive to the smaller scale features
that are required to avoid leakages in the smaller airway branches.

The modified Schlathölter algorithm described in Appendix A
contains a large number of parameters and rules, which to our
experience are not robust and depended heavily on the quality of
the images and conditions of the subjects, e.g. ultra-low dose or
scans of patients showing airway pathology. For this particular rea-
son, we only use the modified Schlathölter algorithm for selecting
suitable values for Tu; Tl and Ts, which in practice can also be done
manually. It should be noted that the proposed method only uses
simple region growing for generating the segmentation results.
We also use the modified Schlathölter algorithm to estimate the
amount of leakage in segmentation results for evaluation purpose,
due to the lack of ground truth.

6.2. Effects of vessel orientation similarity measure

The airway probability image from the appearance model pro-
vides a good indication of the location of the airways in the image,
but it is noisy, with many single voxels or small areas within the
airways having relatively low airway probability. In a region grow-
ing process this can lead to entire subtrees being discarded due to
one broken connection caused by a small cluster of low probability
voxels. This happens especially in the thin, peripheral airway
branches, where one or two low probability voxels are sufficient
to block the entire descending subtree. A simple post processing
of the airway probability image is not sufficient to remove these
problems; we have experimented with coherence enhancing
anisotropic diffusion (Weickert, 1999) to remove the low probabil-
ity areas, but did not observe a significant improvement. Incorpo-
rating vessel orientation similarity as an additional criterion in the
region growing helps to overcome these areas, which is supported
by the improvements shown in Table 1.

A single scale version of the proposed method was reported in
our previous paper (Lo et al., 2008). In comparison, the current,
multi-scale approach enables reliable computation of the orienta-
tion of airways and vessels of various sizes rather than targeting
only the small airways and vessels, which results in an overall
improvement in the amount of branches segmented.

A potential weakness of the proposed vessel orientation similar-
ity measure is that it is not well defined near airway or vessel
bifurcations. We therefore rely more on the airway probability
and accept all voxels where the airway probability is high, and only
use the weaker vessel orientation similarity as a second opinion
when the airway probability is low. This is implemented using
the upper probability threshold Tu, which makes the decision inde-
pendent of the vessel orientation similarity when the airway prob-
ability is high.

6.3. Comparison to results in literature

It is difficult to compare our results to the results obtained by
other authors as most airway tree segmentation methods were
evaluated by visual inspection only. One of the exceptions is the
work by Tschirren et al. (2005), where the number of extracted
branches were counted. However, the segmentation results were
restricted to the sixth generation and only the number of ‘named
branches’ extracted were counted, which makes a direct compari-
son with our results impossible. Another exception is the recent
work by van Ginneken et al. (2008), in which the average tree
length, the number of branches extracted, and the branch length
at different generations were reported for several different data-
sets including a set of 50 low dose images from the NELSON study
(van Iersel et al., 2007). Our results on the large dataset in Sec-
tion 5.4 are similar to the results reported by van Ginneken et al.,
2008, who reported a tree length of 2184 mm and an average
branch count of 166, as compared to 2127 mm and 155 from our
proposed method. A slightly smaller tree length would be expected
in our case since our population contains more women (52% com-
pared to 17% for the NELSON study), who typically have smaller
lungs and shorter airway branches than men. The scans from
DLCST are also of lower resolution as compared to the NELSON
study, where the slice thickness is 1 mm for the DLCST study and
0.7 mm for the NELSON study. The method presented in this paper,
using a smart airway appearance model with a single, global
threshold setting with a simple 3D region growing algorithm, is
complementary to the method in van Ginneken et al. (2008). Com-
bining the two approaches may result in even better results.

We participated in the EXACT’09 (Lo et al., 2009b) airway
extraction challenge that was organized at MICCAI 2009, where
the proposed method was trained and applied to a diverse set of
CT scans. Other than that the thresholds Tu; Tl and Ts were selected
manually using images from the training set, the parameters for
the appearance model and vessel orientation similarity remained
same as those reported in Section 5.1. In comparison to other
methods evaluated in EXACT’09, the proposed method is capable
of obtaining results with very little leakage while still extracting
a relatively large number of branches correctly. Among the 15
methods in EXACT’09, seven methods resulted in both a lower tree
length an a higher false positive rate. Compared to the remaining
seven methods, results from the proposed method stands out
mainly by the small amount of leakage, with an average tree length
of 1184 mm and a false positive rate of 0.11%. The appearance
model constructed on dataset 1 was applied to a scan from EX-
ACT’09, which was acquired using the Siemens Sensation 16 scan-
ner and a very sharp convolution kernel B70s, where we only
observed some reduction in the amount of branches extracted as
compared to the appearance model trained using the dataset from
EXACT’09 (Lo et al., 2009a).

6.4. Possible improvements

One might expect that a trained appearance model, such as is
used in this paper, cannot perform much better than the segmen-
tations that were used to train it, which in our case were obtained
using a simple intensity based region growing. However, the air-
way generation and the number of subtrees that can be extracted
in such a simple region growing method differ from image to im-
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age and from lobe to lobe. Therefore, even though the airway tree
segmentations used for training are incomplete individually, it is
still possible to obtain sufficient examples of voxels that cover an
entire airway tree by using a collection of these incomplete airway
trees.

Since decisions are made for each voxel independently, small
holes do occur in the segmentation, especially in the larger air-
ways. These holes could, for instance, be removed by applying a
morphological closing operator on the segmentation results. Alter-
natively, more accurate segmentations of the inner and outer air-
way walls could be sought around the centerlines extracted in
this paper using, for instance, graph cut segmentation, as was pre-
sented in Pedersen et al. (2009). In the current paper, we aimed to
extract the airway trees as complete as possible and were less con-
cerned with the accuracy of the extracted airway lumen. We there-
fore did not perform such post processing in this work.

Despite the good results, the current setup still misses many
small peripheral airways branches. The reason for this is that
examples of such small airways are not available in the training
segmentations obtained by the interactive intensity based region
growing algorithm. A way to approach this problem would be to
create a better training set, for instance using manual or interactive
segmentation, such as in Tschirren et al. (2009), or by first seg-
menting high quality, high resolution, clinical dose data, using
the intensity region growing method described in Section 2.1,
and then train the classifier on lower quality simulated low dose
images.

Due to the threshold relaxation introduced by the vessel orien-
tation similarity, the proposed method is more prone to leakage as
compared to using airway probability alone, with slightly more
number of cases with severe leakage (LVP > 10%) and percentage
of leakage voxels, as shown in Tables 3 and 4. This is mainly caused
by emphysematous areas around the hilum that locally resemble
airway lumen. Leakage into these areas can cause leakage to the
lung surface, which usually has high response in the airway
appearance model. Fig. 4c (right-most image) shows an example
of such case. A way to reduce the severity of this effect would be
to prevent the border of the lungs from being evaluated, for in-
stance by restricting the evaluation on regions marked by an
eroded lung segmentation.

Our current implementation assumes that the detected vessel
nearest to an airway candidate voxel is the accompanying artery.
It may be useful to discard airway candidates that are too far away
from the detected vessels, in order to further improve segmenta-
tion results, similar to Sonka et al. (1996). In addition, an artery–
vein separation algorithm (Bülow et al., 2005) could be applied
to process only those points that are at a certain distance from
the extracted arteries. However, the majority of the false positives
we observed in our experiments are caused by high responses from
the appearance model at the hilum as mentioned above. Therefore
the extent of improvements introduced by adding this extra step
may be minimal.

Another approach to improve results would be to use a more
flexible decision function, e.g. a second stage classifier that takes
into account the airway probability, vessel orientation similarity,
distance from nearest vessel, etc. One drawback of a second stage
classifier is the increase in computation time. However, a more
serious problem would be the continuous usage of the incomplete
manual segmentations for training, which may result in a classifier
that produces over conservative segmentations. It should be noted
that our proposed method performs very well, despite using a rel-
atively simple threshold based approach, as very few branches in
the training data are missed, especially when taking into account
the number of extra branches found.

Despite of the good results, it is a fact that the proposed method
requires a relatively long computation time. On average, the total
time needed to segment the airway tree from a single CT scan
using the proposed method was 55 min on a single CPU of an Intel
Xeon X5355 processor (2.66 GHz). The majority of the time is spent
on voxel classification to generate the airway probability image
(ca. 25 min), and on computing the seven Gaussian blurred images
for the original image and the airway probability image (ca.
20 min). The final segmentation process however is relatively fast,
with a total execution time of around 10 min. However, it should
be noted that not only most of the processes are independent from
each other, the operations within are also highly independent. This
makes the proposed approach highly parallelizable, and therefore a
large performance gain can be expected from the usage of parallel
processing technologies such as multi-core processors and graph-
ics processing unit.
7. Conclusion

An airway tree segmentation method that is based on a trained
airway appearance model is presented. It is shown that good re-
sults can be obtained even with imperfect training data, with seg-
mentation results that are better than the training data itself. We
combine the airway appearance model with a measure of orienta-
tion similarity between airways and vessels, which results in an
additional significant improvement in segmentation performance
with an increase in detected airway tree length and little or no in-
crease in leakage.
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Appendix A. Automated detection of leaks and extraction of
branch length

The algorithm for leakage detection and branch length extrac-
tion is based on the algorithms presented in Schlathölter et al.
(2002) and van Ginneken et al. (2008). Their observation was that
a wave front propagating through a tree structure remains con-
nected until it encounters a bifurcation, and any side branches
can thus be detected as new disconnected components in the prop-
agating front. We use the fast marching algorithm (Tsitsiklis, 1995;
Malladi and Sethian, 1996) to propagate the wave front, similar to
what was proposed in Schlathölter et al. (2002), with the front
monitored through the set of ‘‘trial” points. For our purpose of eval-
uating a segmentation, we use a speed function that gives a value
of 1 within the segmented structure and a value of 0 outside. This
limits the propagation to only the segmented region.

Besides being able to detect bifurcations, the algorithm is also
able to extract centerlines of individual branches and detect leak-
ages. The centerline of a branch is constructed from the centroids
of the propagation front at each time stamp. This also makes it pos-
sible to obtain the length of each individual branch by measuring
the length of its centerline. Leakages were detected through a ser-
ies of rules based on the geometric properties of the front, as de-
scribed in Schlathölter et al. (2002) and van Ginneken et al.
(2008). Similar to van Ginneken et al. (2008), we divided the leak-
age detection rules into two levels: a segment level and a tree level.

The segment level rules were applied when a branch was still
being segmented by the fast marching algorithm, and the radius
and connectivity of the propagation front were being monitored.
At this level, three criteria were used for leakage detection:
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DsegðSÞ ¼

1; rc=rprev > 3
1; rc=minðRmaxÞ > 1:5
1; nf > 5
0; otherwise

8>>><
>>>:

ð3Þ

where rc is the radius of the current front, rprev is the average radius
of the previous five fronts, Rmax is a set containing the maximum ra-
dius obtained at each of the ancestor branch segments and nf is the
number of disconnected fronts detected. The current segment, S,
was discarded if DsegðSÞ ¼ 1. Furthermore, a sub segment was auto-
matically accepted once its length exceeds 5 mm in order to prevent
rejection of long segments due to small faults at the end.

The tree level rules were applied after all branch segments have
been extracted. The criteria were defined as:

DtreeðSÞ ¼
1; nb > 3
1; hparent > 100�

0; otherwise

8><
>:

ð4Þ

where nb is the number of children and hparent is the angle between a
segment and its parent. Segment S along with its children were re-
moved when DtreeðSÞ ¼ 1. All connected non-bifurcating segments,
due to their children being rejected at some point in the process,
were then merged into a single segment. Finally, all end segments
with lengths less than 1 mm were considered as noise and were
subsequently removed.

It should be noted that the values of the various parameters val-
ues were similar to those suggested in Schlathölter et al. (2002)
and van Ginneken et al. (2008), and were selected on the basis of
pilot experiments on a number of images in dataset 1.
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