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a b s t r a c t

This paper presents a mass preserving image registration algorithm for lung CT images. To account for the
local change in lung tissue intensity during the breathing cycle, a tissue appearance model based on the
principle of preservation of total lung mass is proposed. This model is incorporated into a standard image
registration framework with a composition of a global affine and several free-form B-Spline transforma-
tions with increasing grid resolution. The proposed mass preserving registration method is compared to
registration using the sum of squared intensity differences as a similarity function on four groups of data:
44 pairs of longitudinal inspiratory chest CT scans with small difference in lung volume; 44 pairs of lon-
gitudinal inspiratory chest CT scans with large difference in lung volume; 16 pairs of expiratory and
inspiratory CT scans; and 5 pairs of images extracted at end exhale and end inhale phases of 4D-CT
images. Registration errors, measured as the average distance between vessel tree centerlines in the
matched images, are significantly lower for the proposed mass preserving image registration method
in the second, third and fourth group, while there is no statistically significant difference between the
two methods in the first group. Target registration error, assessed via a set of manually annotated land-
marks in the last group, was significantly smaller for the proposed registration method.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Registration of lung CT images is increasingly used in various
clinical applications. Three main applications may be distinguished
as follows (Sluimer et al., 2006): atlas registration based segmenta-
tion of the lungs and structures within the lungs; registration of
longitudinal CT image series to monitor disease progression; regis-
tration of successive frames in dynamic CT sequences to estimate
local ventilation and perfusion.

Examples of the first application can be found in (Sluimer et al.,
2005; Zhang et al., 2006). Sluimer et al. (2005) proposed to seg-
ment lungs containing dense pathologies by non rigidly registering
a set of segmented example images to the image to segment and
propagating their labels, while Zhang et al. (2006) used atlas reg-
istration to initialize fissure detection for lung lobe segmentation.
Registration of scans of the same patient taken at different points
in time is applied for instance in the monitoring of lung nodules,
both to robustly match nodules in sequential CT scans (Hong
ll rights reserved.

47.
a), marleen@diku.dk (M. de
et al., 2008; Zheng et al., 2007) and to visualize nodule changes
over time (Staring et al., 2007). Recently, registration was also ap-
plied to estimate local emphysema progression from longitudinal
image data (Gorbunova et al., 2008; Staring et al., 2009). Registra-
tion of successive time frames of 4D-CT lung images is used for
motion estimation in lung cancer radiotherapy planning (Boldea
et al., 2008; Guerrero et al., 2005; Li et al., 2008) and for estimation
of regional lung ventilation (Reinhardt et al., 2008; Kabus et al.,
2008; Ue et al., 2007; Guerrero et al., 2006; Ding et al., 2010). Expi-
ratory lung CT scans were registered to inspiratory scans to help
detect air trapping and facilitate classification of pulmonary dis-
eases (Murphy et al., 2009).

A crucial factor in image registration is the choice of a similarity
measure describing the (dis) similarity between the fixed and the
deformed images. Commonly used image similarity functions are
the sum of squared differences (SSDs), mutual information (MI)
and normalized cross correlation (NCC) (Hill et al., 2001). For
intra-subject registration of lung CT images, which is the case we
consider in this paper, SSD is probably the most commonly used
similarity measure (Wu et al., 2008; Zheng et al., 2007; Reinhardt
et al., 2008; Christensen et al., 2007; Pevsner et al., 2006; Sarrut
et al., 2006). Sum of squared differences is optimal when

http://dx.doi.org/10.1016/j.media.2011.11.001
mailto:vladlena@diku.dk
mailto:marleen@diku.dk
http://dx.doi.org/10.1016/j.media.2011.11.001
http://www.sciencedirect.com/science/journal/13618415
http://www.elsevier.com/locate/media


V. Gorbunova et al. / Medical Image Analysis 16 (2012) 786–795 787
corresponding anatomical points are represented by the same
intensity in the images, with additional Gaussian noise. In the case
of CT, where the Hounsfield unit (HU) represents the density of tis-
sue which is often expected to remain constant, this is usually a va-
lid assumption. However, in the lungs the density of tissue depends
on the amount of air present and can therefore vary drastically,
both spatially and in time Shaker et al. (2004) and Sarrut et al.
(2006). The basic assumption of the SSD similarity function thus
does not hold for lung tissue and, as a possible solution, we propose
to model appearance of lung tissue in CT scan with respect to the
regional ventilation using a simple law of mass preservation.

In this mass preserving model, the density of the lung tissue is
inversely proportional to the local volume. Therefore change in lo-
cal volume can be computed from the change in the density. Simon
(2000) applied such a model to estimate regional ventilation from
image intensity in 4D-CT lung scans. Vice versa, the change in den-
sity of the lung tissue can be computed from the change in the local
volume. Under applied local deformations, the absolute value of
the Jacobian determinant defines the factor by which the deforma-
tion expands/contracts the volume. Therefore the density of the
lung tissue can be computed from the Jacobian determinant of
the deformations. Recently, Reinhardt et al. (2008) showed strong
correlation between regional ventilation obtained from Xe-CT
imaging and the ventilation estimated using an image registration
procedure. In the latter case, regional ventilation was defined as
the Jacobian determinant of the obtained transformation between
two images.

In this paper, we propose to model the lung tissue density using
the determinant of the Jacobian of the transformation function. We
modified the sum of squared differences similarity function to en-
able mass preservation and simulate the appearance of the lung
tissue under the given deformations. Early version of this work ap-
peared in (Gorbunova et al., 2008; Gorbunova et al., 2009), where
the mass preserving algorithm was applied to the longitudinal
breath-hold lung CT scans (Gorbunova et al., 2008) and to the pairs
of maximum inspiration and maximum expiration CT scans taken
on the same day (Gorbunova et al., 2009). Since then a similar idea
has been used by Yin et al. (2009a) and Yin et al. (2009b), where
the mass preserving image registration was applied to breath-hold
lung CT images acquired at the maximum inspiration and maxi-
mum expiration in the same scanning session.

Several recent studies have successfully incorporated mass pre-
serving assumption in registration process. Sarrut et al. (2006) pro-
posed to modify lung density in a 4D-CT image prior to
registration. Zhu et al. (2007) proposed a new registration method
which establishes the optimal mass transportation between the
images while the image intensities remain constant. Castillo
et al. (2009a) proposed to incorporate the mass preserving inten-
sity modification model into the optical-flow registration and
applied it to the 4D-CT images.

In this paper, we present the registration framework in more
detail, investigate the assumption of mass preservation, and pres-
ent a quantitative evaluation of registration accuracy of the pro-
posed mass preserving image registration method compared to
an image registration method with the SSD similarity function on
a large number of CT scans of varying quality, ranging from small
to large differences in inspiration level.
2. Mass preserving image registration

This section briefly presents a general deformable image regis-
tration framework based on B-Splines which is used in many med-
ical imaging tasks (Rueckert et al., 1999; Mattes et al., 2003), and
explains how the proposed mass preserving methodology can be
incorporated in this framework.
2.1. Image registration outline

Consider a pair of images If and Im, referred to as fixed image
and moving image respectively. The task of registration is to find
for every point in the fixed image domain Xf the corresponding
point in the moving image domain Xm. The obtained point corre-
spondences define a general transformation function T:Xf ? Xm.
Validity of the transformation can be assessed by comparing the
deformed moving image and the fixed image using a dissimilarity
function C(If, Im�T). An optimal transformation should minimize the
dissimilarity between the deformed and fixed image, therefore the
registration process can be formulated as a minimization problem,
as follows,

argmin
T
ðCðIf ; Im � TÞÞ:
2.2. Preprocessing

To avoid errors near the lung surface which are caused by the
sliding motion of lungs along the chest wall during breathing, only
the image information inside the lungs is used for registration. Seg-
mentations of the lung fields are obtained using region growing
and morphological smoothing (Lo et al., 2010) and the background
region is set to a constant value of 0 HU. Finally, the image inten-
sities are shifted with a value 1000 HU so that the new intensities
approximate the real densities of the tissues.

2.3. Transformation

We follow a common approach and use a multi-resolution im-
age registration strategy. First, the images are registered affinely.
To provide an accurate initialization of the affine transformation,
the trachea and main bronchi are first extracted using a modified
fast marching algorithm (Lo et al., 2010). The center of the affine
transformation is then set at the carina point in the fixed image
and the initial translation is set to the difference between the car-
ina points in moving and fixed images. Secondly, a series of B-
Spline transformations, with corresponding Gaussian smoothing
at the coarser levels, is applied to the pre-aligned, regridded
images. The final transformation is thus a composition of a global
affine transformation TA and N levels of B-Spline transformations
Ti

B�Spline with decreasing grid size:

TfinalðxÞ ¼ TN
B�Spline � . . . � T1

B�Spline � TAðxÞ; ð1Þ

where x = (x1, x2, x3) is a point in the fixed image domain Xf.
In this work, we have used small step size along the gradient

and multi-level B-Spline grid to ensure that the transformation is
invertible (Rueckert et al., 2006).

2.4. Mass preserving similarity function

We use the sum of squared differences similarity function as the
basis for the mass preserving similarity measure,

CðIf ; Im � TÞ ¼ 1
jXf j
kIf ðxÞ � ImðTðxÞÞk2

L2
; ð2Þ

where x is a point in the region Xf occupied by the fixed image If,
and y = T(x) is the corresponding point in the region Xm occupied
by the moving image Im.

The sum of squared differences is an optimal similarity measure
if image intensities are identical or differ with Gaussian noise. This
assumption does not hold in case of lung CT images, where during
inhalation both blood and air enter the lungs. We used a hypothe-
sis that most of the incoming blood stays in the larger vessels, and
only air is inhaled into the alveoli. Therefore we can assume that
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mass of parenchyma remains constant and the density of lung tis-
sue is inversely proportional to the amount of air. Under the ap-
plied local deformations, the induced change in local volume is
defined by the determinant of Jacobain of the associated transfor-
mation function.

Using the mass preserving assumption, the intensity of the
moving image Im in a point y 2XM is inversely proportional to
the change in local volume detðJT�1 Þ in the point y. The modeled
intensity can be written as bImðyÞ ¼ ½detðJT�1 ðyÞÞ��1ImðyÞ. Assuming
that the transformation function T is invertible, the determinant
of Jacobian JT�1 ðyÞ is the inverse of the determinant of Jacobian
JT(x) and the modeled intensity of the moving image can be written
as bImðyÞ ¼ detðJTðxÞÞ � ImðyÞ.

Finally, the mass preserving intensity model can be naturally
incorporated in the standard sum of square differences similarity
function:

CðIf ; Im � TÞ ¼ 1
jXf j

Z
Xf

½If ðxÞ � detðJTðxÞÞ � ImðTðxÞÞ�2dx: ð3Þ
2.5. Optimization

In this paper we use a stochastic gradient descent method
(Klein et al., 2007) to optimize the similarity function. The closed
form expression for the gradient of the proposed mass preserving
similarity function of Eq. (3) is,

DaC ¼ � 2
jXf j

Z
Xf

½If ðxÞ � detðJTðxÞÞ � ImðTðxÞÞ� � detðJTðxÞÞ� ð4Þ

� ½vecðJ�TðxÞÞT � DavecðJðxÞÞ � ImðTðxÞÞ � DyImðTðxÞÞ � DaTðxÞ� dx;

where Da represents a gradient row vector operator with respect to
the transformation parameters a;Dy represents a spatial gradient
vector operator, and vec(�) is the vector constructed by concatenat-
ing all columns of a matrix. The derivation of Eq. (4) is given in the
Appendix.

In case of SSD similarity function, only voxels with non-zero im-
age gradient contribute to the gradient thus resulting in a higher
uncertainty of registration in homogeneous regions (Hub et al.,
2009). In contrast, for the proposed mass preserving similarity
function of Eq. (4), voxels, where the image gradient DyImðyÞ is
close to zero but intensities of the fixed and the deformed moving
image are different also contribute to the gradient thus providing
additional information in homogeneous regions.

3. Evaluation of image registration accuracy

The performance of image registration with the regular sum of
squared differences similarity function (2) is compared to image
registration with the proposed mass preserving similarity function
(3) based on the vessel tree centerlines.

The vessels are segmented using the algorithm described in (Lo
et al., 2010). First, the image is thresholded with fixed intensity
tv = �380 HU, followed by multi-scale local analysis of the Hessian
matrix to remove non-tube like structures. Large vessels in the hy-
lum area are discarded. Finally, centerlines are extracted from the
segmented vessel tree using a 3D thinning algorithm (Wang and
Basu, 2007). Fig. 1 shows an example of a segmented vessel tree
and the centerlines extracted from it.

We measure image registration accuracy using the Euclidean
distance between vessel tree centerlines. First, we extract vessels
from both moving and fixed images. Next, the moving image vessel
tree is deformed according to the final transformation coefficients.
The vessel centerlines are extracted from the segmented vessel
trees in fixed and deformed images. Then the Euclidean distance
map is computed for the centerlines of the fixed image. Finally,
the image registration error is computed as the Euclidean distance
map values averaged over all centerline voxels in the deformed
moving vessel tree.

Considering the large size of the data sets, as presented in this
paper, the proposed evaluation approach offers an automatic alter-
native to the gold standard validation via manually annotated
landmarks. Additionally, the registration accuracy on a subset of
images is assessed using manually annotated landmarks.
4. Experiments and results

We performed three different experiments to study the pro-
posed image registration method. The first experiment, described
in Section 4.2, was designed to evaluate the assumption of mass
preservation and to investigate the relationship between the vol-
ume of lungs and appearance of lung tissue. Section 4.3 illustrates
the behaviour of the two registration methods, the proposed regis-
tration with mass preserving similarity function (MP) and the reg-
istration with sum of squared differences similarity function (SSD),
on a synthetic example. Finally, the third experiment in Section 4.4
was designed to investigate how the difference in lung volume ef-
fects the two registration methods. Section 4.1 describes the
parameter settings for the two registration methods used in all
experiments.

4.1. Parameter settings

We applied three levels of B-Spline transformations, N = 3, with
decreasing grid size. The first two levels were applied to the de-
formed, regridded moving image blurred Gaussian r1,2 = 1 voxel
and sampled by a factor of two in each direction. The third level
was applied to the full resolution image without smoothing. The
number of grid cells in each B-Spline level was 3 � 3 � 3,6 �
6 � 6 and 12 � 12 � 12 respectively. Optimal parameters were ob-
tained by minimizing the cost function between the fixed and cor-
responding moving images.

After each level of transformation we deformed or regridded the
original moving image and set the deformed image as a new mov-
ing image for the next level of transformation. The Jacobian of the
transformation was computed using a first order difference scheme
with the step equal to the image spacing.

Each of the four transformations in Eq. (1) was optimized sepa-
rately using the stochastic gradient descent (Klein et al., 2007;
Kushner and Yin, 2003). The number of voxel samples was chosen
proportional to the number of parameters to optimize, and was set
to 50,000 for the finest B-Spline transformation and to 10,000 for
the intermediate B-Spline and Affine transformations. Maximum
number of iterations was 1000 for all the transformations. The
maximum step length along the normalized gradient direction
was set to 0.5 mm.

Vessel trees were segmented using the algorithm as in (Lo et al.,
2010). The intensity threshold was set to �400 HU for the scans in
the experiments in Section 4.4.1, 4.4.2, and �600 for the scans in
the experiments in Section 4.4.3, and the ratio of Hessian eigen-
values was set to m1 = 0.5, m2 = 0.5 for the experiments in Section
4.4.1 and 4.4.2 and m1 = 0.75, m2 = 0.5, for the experiments in Sec-
tion 4.4.3. For more details on the parameters of the segmentation
algorithm we refer reader to (Lo et al., 2010).

4.2. Experiment 1: relationship between mass, volume and density of
lungs

We selected 797 subjects who were scanned annually during a
3 year period in a lung cancer screening program (Pedersen et al.,
2009). None of the subjects suffered from Chronic Obstructive



Fig. 1. Surface rendering of lung fields and vessels segmented (a) and corresponding vessel centerlines (b).
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Pulmonary Disease (COPD) at any of the visits according to the
GOLD guidelines (Rabe, 2007), so change in amount of lung tissue
should be relatively small. We generated all possible pairs of scans
of the same subject and randomly selected 1430 image pairs. With-
in the segmented lung mask, we computed total lung mass, total
lung volume and average lung density for each pair of CT scans.
Fig. 2a shows the scatter plot between relative change in total lung
volume and change in total lung mass for the image pairs. Fig. 2b
shows the scatter plot between relative change in total lung vol-
ume and change in average density. Spearman correlation between
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We investigated the relationship between total lung volume
and the shape of histogram of a CT lung scan. The histogram of vox-
el intensities within the lungs mask was established with the uni-
form bins of 1 HU in the range of �1000–0 HU. We applied a
simplified mass preserving model, where the lungs were assumed
to expand or contract uniformly and the intensities were globally
adjusted as
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bI1ðxÞ ¼
V1

V2
ð1000þ I1ðxÞÞ � 1000; ð5Þ

where the I1 is the first image in a pair, the V1 and V2 is the total
lung volume of the first and the second images in the pair. In order
to account for empty bins, the histograms were smoothed with
Gaussian r = 5 HU. Finally, the histograms were normalized to rep-
resent probability distribution of the intensities. The difference be-
tween the probability distributions of intensity values of lung
parenchyma before and after adjustment was assessed using the
Kullback–Leibler divergence.

The 1430 pairs of CT scans were split into 15 groups with the
relative volume difference varying from �37.5% to 37.5% of the
mean lung volume of the two scans. For each group, the average
and the standard deviation of the Kullback–Leibler divergence is
reported in the Fig. 2c.

4.3. Experiment 2: synthetic data

The two image registration methods were evaluated on a syn-
thetic image pair constructed to mimic lung tissue expansion un-
der the mass preservation law. Both moving and fixed images
represented uniform spheres placed in the center of the images
with the background density 0 [g/L] (or intensity �1000 HU). The
moving sphere S1 had radius r1 = 16 mm and density q1 = 200 [g/
L] (or intensity value I1 = �800 HU) and the fixed sphere S2 had ra-
dius r2 = 20 mm and density q2 = 100 [g/L] (or intensity value
I2 = �900 HU). The mass of the two spheres was approximately
equal, 1.93 g and 1.89 g respectively.

The initial affine transformation was excluded from the image
registration framework described in Section 2.3 and only the mul-
ti-level B-Spline transformations were used. Optimization parame-
ters were identical for both image registration methods.

Fig. 3 shows the original fixed Fig. 3a and moving Fig. 3b
spheres and the resulting difference between the registered and
fixed images for the standard registration method Fig. 3c and the
mass preserving method Fig. 3d.

4.4. Experiment 3: registration of lung CT scans

The third experiment was conducted on a large number of lung
CT scans of varying quality, ranging from small to large differences
in inspiration level.

� Group A: 44 image pairs of the same subject with the relative
difference between total lung volumes for baseline and follow
up images DTV < 2.5%, data obtained from a lung cancer screen-
ing study (Pedersen et al., 2009);
� Group B: 44 image pairs of the same subject with the relative

difference between total lung volumes for baseline and follow
up images DTV > 9%, data obtained from the lung cancer screen-
ing study (Pedersen et al., 2009);
Fig. 3. The two image registration methods were applied to a synthetic example.
The moving image Fig. 3b and fixed image Fig. 3a consist of spheres with equal
mass, but different density. Results (difference image) of the standard image
registration method Fig. 3c and the proposed mass preserving image registration
method Fig. 3d.
� Group C: 16 image pairs of inspiratory and expiratory CT scans
children with cystic fibrosis with the average relative difference
between total lung volumes 48.3%, data obtained from a study
(de Jong et al., 2004);
� Group D: 5 image pairs extracted at the end exhale and end

inhale phases of the 4D-CT scans with the average relative dif-
ference between total lung volumes 11%, data obtained from
the publicly available database (Castillo et al., 2009b).

For all four groups, we measured performance of the registra-
tion algorithms using the proposed evaluation technique described
in Section 3. For the last group, 300 manually selected landmarks
for each image pair were available. In this group we additionally
compared the two registration methods with the landmark regis-
tration error.

4.4.1. Longitudinal study: groups A and B
Two groups of low dose CT image pairs were selected from the

Danish Lung Cancer Trial Study (DLCST) database (Pedersen et al.,
2009). Before the acquisition, subjects were instructed to hold their
breath at maximum inspiration. Image pairs have a time interval
between baseline and follow up of approximately one year. The
in-plane resolution was 0.78 � 0.78 mm and the slice thickness
was 1 mm. In the group A the average relative difference between
the baseline and follow up lung volumes was 1.23 ± 0.77% and in
the group B the average difference was 14.96 ± 5.84%.

Evaluation results for the two image registration methods are
presented in the Table 1. For each patient, we computed the aver-
age distance between centerlines registered with the standard
method and with the proposed mass preserving method. The over-
all improvement for each data set is presented in Fig. 4 with box
plots showing median, lower and upper quartile, and skewness
of the distribution within each group. The correlation between
the relative difference in total lung volume and decrease in error
of the mass preserving method in the two selected groups was
r = 0.44 (p < 0.001).

The proposed method is computationally more demanding, due
to a more complex gradient calculations of the cost function and
non-optimized algorithm implementation. In the DLCST data, the
proposed registration method on average required 1229 iterations
or 77 min in total, whereas the standard registration required 840
iterations or 10 min in total.

4.4.2. Expiratory and inspiratory CT images: group C
The group C in our experiment consists of 16 children with cys-

tic fibrosis (CF) monitored at Sophia Children’s Hospital (de Jong
et al., 2004). All children underwent biannual CT scanning during
annual checkup during a clinically stable period. Each CT study
consisted of a low-dose CT scan taken at maximum inspiration
and an ultra low-dose scan taken at maximum expiration. Before
the acquisition, subjects were instructed to exhale or inhale com-
pletely and to hold their breath. The in-plane resolution was on
average 0.54 � 0.54 mm, the slice thickness is 2.5 mm with a slice
Table 1
Average registration accuracy in each group, assessed using the vessel centerline
distance, for the registration with the mass preserving (MP) and the sum of squared
differences similarity function (SSD). Number in brackets indicates the number of
subjects in the group.

Group DTV (%) DTV (L) Vessel centerline distance (mm)

SSD MP T-test

A (44) 1.23 ± 0.77 0.07 ± 0.04 0.541 ± 0.258 0.539 ± 0.251 p = 0.604
B (44) 14.96 ± 5.84 0.83 ± 0.29 1.017 ± 0.634 0.987 ± 0.619 p = 0.028
C (16) 48.27 ± 19.69 1.53 ± 0.94 2.959 ± 1.370 2.535 ± 1.046 p = 0.003
D (5) 11.15 ± 2.86 0.37 ± 0.10 2.070 ± 0.519 2.038 ± 0.522 p = 0.160



Fig. 4. Box plots showing the improvement in registration accuracy obtained by the mass preserving image registration method for each of the groups A–D. Each plot shows
the median (central mark), lower and upper quartile (edges of the box), skewness of the distribution (notches) and outliers (crosses). From left to right: group A (44 subjects
with average DTV = 1.23%), group B (44 subjects with average DTV = 14.96%), group C (16 subjects with DTV = 48.27%), group D (five subjects with average DTV = 11.14%).

Fig. 5. An example illustrating the registration performance of mass preserving image registration Fig. 5a–d and standard registration Fig. 5e–h for a randomly selected
subject from the group C. The difference images were constructed by first deforming the expiratory image and then subtracting it from the inspiratory image. Every 20th slice,
selected in the range of 40–100 from the corresponding volumetric difference image is displayed from left to right.

Table 2
The two registration methods compared based on the proposed evaluation measure and the landmark registration error. Evaluation based on vessel-centerline distance and the
validation based on the landmarks are reported before the registration (Initial), after the registration was applied with the mass preserving similarity function (MP), and with the
sum of squared differences similarity function (SSD). The statistical comparison of the landmark registration errors is performed using Student’s t-test and the p-value is reported
in the last column.

Vessel centerline distance (mm) Landmark registration error (mm)

N DTV (%) Initial MP SSD Initial MP SSD p-value

1 9.2 3.16 ± 2.17 1.38 ± 1.61 1.43 ± 1.61 3.99 ± 2.75 1.15 ± 0.55 1.18 ± 0.56 p = 0.05
2 8.9 4.64 ± 3.67 1.82 ± 2.35 1.80 ± 2.34 4.34 ± 3.90 1.26 ± 0.70 1.27 ± 0.68 p = 0.53
3 11.5 5.15 ± 3.80 2.16 ± 2.78 2.25 ± 2.79 6.93 ± 4.09 1.79 ± 1.08 1.88 ± 1.12 p < 0.001
4 15.9 4.86 ± 3.80 2.02 ± 2.26 2.05 ± 2.25 9.83 ± 4.86 2.01 ± 1.41 2.16 ± 1.54 p < 0.001
5 10.2 6.35 ± 6.42 2.81 ± 3.68 2.82 ± 3.65 7.51 ± 5.53 2.31 ± 1.89 2.29 ± 1.82 p = 0.32
All 11.14 4.83 ± 1.14 2.04 ± 0.52 2.07 ± 0.52 6.52 ± 4.83 1.70 ± 1.30 1.76 ± 1.32 p < 0.001
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overlap of 1.3 mm. The difference in inspiration level between the
two images was large on average, and many of the expiration scans
show regions of trapped air, indicating local inhomogeneity of
deformation. On average, the difference between inspiratory and
expiratory volumes was 48.27 ± 19.69%. The inspiratory image
was set as the fixed image.

Evaluation results are presented in the Table 1 and the overall
improvement in the group C is presented in the box-plot Fig. 4. Cor-
relation between the relative difference in total lung volume and
improvement of the mass preserving method in the selected group
was r = 0.77 (p < 0.001). Fig. 5 shows an example result of the two
image registration techniques. The expiratory image was deformed
according to the final transformation and subtracted from the inspi-
ratory image. The two images show corresponding slices in the
difference images for the mass preserving image registration tech-
nique Fig. 5a–d and for the standard registration Fig. 5e–h.
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4.4.3. End exhale and end inhale CT images: group D
The last group D consists of a publicly available dataset of 5

pairs of images (Castillo et al., 2009b), where each pair consists
of images extracted at the end exhale and the end inhale phases
of 4D CT images. In-plane resolution of the images varied from
0.97 � 0.97 mm to 1.16 � 1.16 mm and slice thickness was
2.5 mm. The study (Castillo et al., 2009b) also provides 300 manu-
ally placed landmarks at the end exhale and end inhale phases of
the 4D CT images. End exhale image was set as the fixed image.

We validated accuracy of the two image registration algorithms
using two independent evaluation measures: the landmark regis-
tration error and the vessel centerline distance. The mean and
the standard deviation of landmark registration error for each case
is reported in the Table 2. The mean and the standard deviation of
the vessel centerline distance for each case is also reported in the
Table 2.
5. Discussion

5.1. Mass preservation in lung CT scans

The experiment in Section 4.2 showed a strong correlation be-
tween the change in average lung density and the change in total
lung volume (r = �0.91, p < 0.001). This indicates a strong depen-
dency of lung tissue appearance in CT scan on the level of inspira-
tion. The correlation between the change in mass of the lungs and
the change in total lung volume was weak but significant (r = 0.14,
p < 0.001). This may be due to the incomplete vessel extraction,
since inspiration leads to increase in perfusion and therefore to in-
crease in partial volume effect near the vessels. It can also be due to
increased perfusion outside the main vessels resulting in incom-
plete mass preservation.

A simplified intensity correction model based on the idea of
mass preservation was investigated in the Section 4.2. Analysis of
image histograms of healthy subjects from Fig. 2c confirmed the
fact that the probability density function of image intensities signif-
icantly depends on the level of inspiration. Furthermore, the simpli-
fied global mass preserving intensity correction significantly
reduced the divergence between the histograms as shown in Fig. 2c.

The results indicated that mass preservation is a plausible mod-
el of lung parenchyma, which models the change of lung tissue
density caused by the change of total lung volume.
5.2. Mass preserving registration of lung CT images

The experiment in Section 4.3, conducted on synthetic data,
illustrated the principle advantage of the proposed mass preserv-
ing registration, where mass preserving image registration leads
to the expected alignment of two spheres that are equal in mass
and different in volume. The SSD similarity function aligns equal
intensities and in the presented synthetic data, intensities of the
two spheres were different therefore the geometrically correct
solution results in a larger value of the SSD similarity function than
the initial positioning of the spheres. The mass preserving similar-
ity function allows to align initially different intensities since the
intensity is adjusted during the registration procedure thus result-
ing in the expected alignment of the spheres.

In cases, where image contrast differs between the images, the
assumption of our model as well as the assumptions of the stan-
dard SSD similarity measure do not hold. However in the follow
up studies, like the one considered in this paper, clinicians prefer
to follow a standard acquisition protocol and reconstruction meth-
od and thus the difference in contrast should be negligible.

Although the constructed synthetic experiment is an excep-
tional example, the key advantage of mass preserving similarity
function were clearly illustrated. Optimization for the sum of
squared differences similarity function as well as the proposed
mass preserving similarity function is mainly driven by high gradi-
ent structures in the moving image. In areas of high gradients both
algorithms will converge to the correct solution, if they were ini-
tialized close to it. In absence of gradients the optimization of
SSD similarity function will stop while the mass preserving simi-
larity function will continue. For example, homogeneous areas in
an expiration image with high intensities will tend to expand in
case of mass preserving similarity function.

The advantage of mass preserving image registration is further
confirmed in the third experiment. Especially in cases, where the
difference in lung volume is large, which implies differences in re-
gional ventilation and density. The group A of subjects in our
experiments had negligible difference in lung tissue appearance
between the two CT scans and the difference between the two
methods was not significant (p = 0.6). In the group B, mass preserv-
ing image registration resulted in a relatively small, but statisti-
cally significant, improvement in registration accuracy compared
to the standard image registration method (0.03 mm, p = 0.03). In
group C, the most challenging group, a considerable and significant
improvement was measured (0.43 mm, p = 0.003). The improve-
ment in registration accuracy in groups A–C was strongly corre-
lated with the relative difference in lung volume (r = 0.78,
p < 0.001). In the last group D, the improvement of mass preserving
registration assessed via manually selected landmarks was
0.06 mm, and was statistically significant (p 6 0.001).

A mass preserving model predicts lung tissue appearance in CT
scan during respiration based on a simple assumption: preserva-
tion of blood in lungs. The density of lung tissue is corrected lo-
cally, within the typical size of the B-Spline kernel, according to
the change in regional ventilation as measured by the Jacobian of
the deformation field. The limitation of this model is We previously
applied this model for monitoring local emphysema progression in
patients with COPD (Gorbunova et al., 2008). Recently, a similar
study was done to monitor emphysema progression in patients
with Alpha-1 antitrypsin deficiency (Staring et al., 2009), where a
mass preserving intensity correction was applied after normal im-
age registration to compensate for differences in inspiration level
between scans. Results suggested more accurate estimates of the
disease progression in both these studies.

5.3. Distance between vessel centerlines as a measure for registration
accuracy

Manual extraction of landmarks is both time consuming and
prone to inter-expert variability. In this work, instead of relying
on manual landmarking we used an automated evaluation method
based on vessel tree centerlines to assess the registration accuracy,
resulting in a large number of approximately corresponding land-
marks throughout the lungs. The drawback of the proposed evalu-
ation is that vessels that are segmented in only one of the scans
may lead to inflation of errors, whereas the absence of point corre-
spondence may lead to underestimation of errors especially in re-
gions, where vessel density is high. This could be improved for
instance by determining corresponding vessel bifurcation points
and parameterizing vessel segments in a consistent manner. How-
ever, the effects of over- and under-estimations can be expected to
be similar for two different registration methods of the same scan
pair provided that both registration methods are reasonably good,
and the vessel tree distance is therefore well suited to compare
registration accuracy of different methods on the same images.

Comparison with landmark registration error (TRE), available
for the group D, showed that the vessel distance measure underes-
timated the errors before registration (the average vessel distance
measure was 4.83 mm while the average TRE was 6.52 mm) and
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resulted in overall overestimation of errors after the registration
(2.40 mm versus 1.70 mm respectively).
5.4. Comparison to results in literature

In the conducted experiments, the proposed mass preserving
image registration performed better than the registration with
the sum of squared differences similarity function. The results of
the registration with SSD similarity function was comparable with
those reported in the literature. Most registration methods were
evaluated on 4D-CT scans Castillo et al. (2009b), Yin et al.
(2009b), Wu et al. (2008), Vik et al. (2008), Pevsner et al. (2006),
Castillo et al. (2009a).

Wu et al. (2008) used manually extracted landmarks from four
end exhale and end inhale image pairs from dynamic CT sequences
to evaluate a B-Spline image registration algorithm and reported
an average distance between landmarks of 2.78 mm. Pevsner
et al. (2006) analyzed 6 pairs of end-exhale and end-inhale CT lung
scans registered using a fluid registration method with 41 land-
marks and reported a discrepancy between registered and obser-
ver-determined landmarks of 2.9 mm on average. Vik et al.
(2008) evaluated a B-Spline image registration algorithm on a set
of 10 pairs of end exhale and end inhale phases of 4D-CT lung scans
with user-determined landmarks. The average distance between
landmarks was 2.85 ± 3.06 mm. Castillo et al. (2009b) compared
optical flow and landmark-based image registration algorithms
on 5 pairs of end inhale and end exhale 4D-CT images as in our
experiments. The average accuracy was 6.9 ± 0.1 mm for the opti-
cal flow image registration and 2.5 ± 0.02 mm for landmark-based
registration. Another study by Castillo et al. (2009a) reported the
average TRE of 1.59 mm obtained on the first 3 pairs of the end ex-
hale and end inhale phases of 4D-CT scans. The target registration
error of the proposed mass preserving registration method applied
on the same 3 pairs end inhale and end exhale phases of 4D-CT
scans was 1.40 mm on average.

In our experiments on group C, the pairs of maximum expira-
tion and maximum inspiration CT lung scans, the average vessel
distance after the mass preserving registration was relatively large,
2.53 mm. This group was the most challenging because of large dif-
ference in volume and expected large regional differences in venti-
lation due to pathology such as air-trapping and fibrotic tissue. In
this group, the mass preserving registration showed clear improve-
ment compared to the registration method with the SSD similarity
function.

Registration of pairs of inspiratory lung CT scans generally pro-
duces more accurate results than can be obtained for expiration/
inspiration scan pairs or end-exhale/end-inhale images from 4D-
CT. Our experiments on longitudinal inspiratory CT lung scans
showed comparable accuracy of mass preserving registration
0.76 mm to the results on similar studies reported in the literature
(Betke et al., 2003; Murphy et al., 2008). Betke et al. (Betke et al.,
2003) evaluated an image registration algorithm on 10 pairs of re-
peated inspiratory CT scans using RMS between corresponding sur-
face points and measured error of 3.7 mm. Murphy et al. (Murphy
et al., 2008) reported an average error of only 0.7 mm evaluated on
a set of semi-automatically extracted landmarks. In this study,
selection of landmarks was supported by a thin-plate spline land-
mark registration algorithm, potentially favoring smooth deforma-
tion fields.
6. Conclusion

In this paper we investigated the assumption of mass preserva-
tion during breathing cycle on a large number of CT scans, ranging
from small to large difference in inspiration level. We incorporated
the mass preserving model into a deformable image registration
framework and evaluated it on synthetic data and pairs of lung
CT scans acquired from the same subject. The results showed that
the mass preserving model is a plausible model which describes
the change in density in lung CT scans related to the change in lung
volume. The mass preserving image registration performs signifi-
cantly better than the image registration method without mass
preservation assumption in image pairs with a considerable differ-
ence in inspiration level. Especially in regions without strong im-
age gradients, the mass preserving assumption helps to obtain
physically plausible deformations.
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Appendix A. Gradient of the mass preserving similarity function

In this section we derive the analytical expression for the gradi-
ent of the proposed mass preserving similarity function as given in
Eq. (4). Consider the similarity function (as in Eq. (3)):

CðIf ; Im � TÞ ¼ 1
jXf j

Z
Xf

½If ðxÞ � detðJTðxÞÞ � ImðTðxÞÞ�2dx: ðA:1Þ

The transformation function T(x) depends on the set of param-
eters a, T(a, x). For simplicity, we shorten the notation of the Jaco-
bian determinant jJj = det(JT(x)), the fixed image value in a point x
as If = If(x), the transformed point y = T(x, a), the moving image va-
lue in the transformation point Im = Im(y) and label the observed
difference in intensities at a point x with respect to the transforma-
tion parameters a as a function G(a, x):

CðIf ; Im � TðaÞÞ ¼
Z

Xf

Gða; xÞ2 dx;

Gða; xÞ ¼ If ðxÞ � detðJTðxÞÞ � Imðyða;xÞÞ ¼ If � jJjIm:

Using differential algebra we write the full differential of the
similarity function

dCðaÞ ¼
Z

Xf

2GdG dx;

dGða;xÞ ¼ DxIf dx� jJjtrðJ�1dJÞIm � jJjDyImdy

¼ DxIf dx� jJj trðJ�1dJÞ|fflfflfflfflffl{zfflfflfflfflffl}
ð1Þ

Im þDyImdy

0
B@

1
CA: ðA:2Þ

Using the definition of the vec operator, we can simplify the
term (1):

tr ðJ�1dJÞ ¼ vecðJ�TÞT vecðdJÞ: ðA:3Þ

Further the term vec (dJ) can be expanded,

vecðdJÞ ¼ dðvecðJÞÞ ¼ DavecðJÞ daþDxvecðJÞ dx; ðA:4Þ
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and by substituting Eq. (A.4) into Eq. (A.3) we get

tr ðJ�1dJÞ ¼ vecðJ�TÞT � DavecðJÞ daþ vecðJ�TÞT

� DxvecðJÞ dx; ðA:5Þ

where Da is the gradient in the direction of the transformation
parameters a and Dx is a spatial gradient. The differential dy is de-
fined as

dy ¼ Day daþDxy dx ¼ Day daþ J dx: ðA:6Þ

By substituting Eqs. (A.5) and (A.6) into Eq. (A.2) we get the full dif-
ferential of C(If, Im�T):

dGða; xÞ ¼ DxIf dx� jJj � DyIm � J dx� jJj � Im � vecðJ�TÞT � DxvecðJÞ dx

�jJj � vecðJ�TÞT � DavecðJÞ da� jJj � DyIm � Day da:

Finally, since x is fixed, we find that the partial derivative of C(If,
Im�T), w.r.t. the transformation parameters a is

DaC ¼ � 1
Xf

Z
Xf

2ðIf � jJj � ImÞ � jJj � ðvecðJ�TÞT � DavecðJÞ � Im �DyIm

� DayÞ dx;

where DyIm ¼ ð@y1
Im; @y2

Im; @y3
ImÞ is the spatial row-vector gradient

and Da is the row-vector gradients the transformation
T(x) = y = (y1; y2; y3) in the direction of the transformation parame-
ters a,

Day ¼
@a1 y1 . . . @an y1

@a1 y2 . . . @an y2

@a1 y3 . . . @an y3

0
B@

1
CA: ðA:7Þ
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