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Quantitative Analysis of Pulmonary Emphysema
using Local Binary Patterns

Lauge Sørensen*, Saher B. Shaker, and Marleen de Bruijne

Abstract— We aim at improving quantitative measures of
emphysema in computed tomography (CT) images of the lungs.
Current standard measures, such as the relative area of emphy-
sema (RA), rely on a single intensity threshold on individual
pixels, thus ignoring any interrelations between pixels. Texture
analysis allows for a much richer representation that also takes
the local structure around pixels into account.

This paper presents a texture classification based system for
emphysema quantification in CT images. Measures of emphysema
severity are obtained by fusing pixel posterior probabilities
output by a classifier. Local binary patterns (LBP) are used as
texture features, and joint LBP and intensity histograms are used
for characterizing regions of interest (ROI)s. Classification is then
performed using ak nearest neighbor classifier with a histogram
dissimilarity measure as distance.

A 95.2% classification accuracy was achieved on a set of168
manually annotated ROIs comprising the three classes: normal
tissue, centrilobular emphysema, and paraseptal emphysema. The
measured emphysema severity was in good agreement with a
pulmonary function test (PFT) achieving correlation coefficients
of up to |r| = 0.79 in 39 subjects. The results were compared to
RA and to a Gaussian filter bank, and the texture based measures
correlated significantly better with PFT than RA did.

Index Terms— Emphysema, local binary patterns, quantitative
CT, texture analysis, tissue classification.

I. I NTRODUCTION

CHRONIC obstructive pulmonary disease (COPD) is a
growing health problem worldwide. In the United States

alone, it is the fourth leading cause of morbidity and mortal-
ity, and it is estimated to become the fifth most burdening
disease worldwide by 2020 [1]. COPD is a chronic lung
disease characterized by limitation of airflow. It comprises two
components: small airway disease and emphysema, which is
characterized by gradual loss of lung tissue. Detection and
quantification of emphysema is important, since it is thought
to be the main cause of shortness of breath and disability in
COPD.

The primary diagnostic tool for COPD is spirometry by
which various pulmonary function tests (PFT)s are performed
[1]. However, PFTs have a low sensitivity to emphysema and
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are not capable of detecting early stages of COPD [2]. Another
diagnostic tool that is gaining more and more attention is com-
puted tomography (CT) imaging. CT is a sensitive method for
diagnosing emphysema, assessing its severity, and determining
its subtype, and both visual and quantitative CT assessmentare
closely correlated with the pathological extent of emphysema
[3].

In this work, we focus on the assessment of emphysema
in CT images. Emphysema lesions, or bullae, are visible in
CT images as areas of abnormally low attenuation values
close to that of air. In CT, emphysema can be classified into
three subtypes, or patterns, and we will adopt the naming
and definitions used in Webbet al. [4]. These subtypes are
the following: centrilobular emphysema (CLE), defined as
multiple small low-attenuation areas; paraseptal emphysema
(PSE), defined as multiple low-attenuation areas in a single
layer along the pleura often surrounded by interlobular septa
that is visible as thin white walls; and panlobular emphysema
(PLE), defined as a low-attenuation lung with fewer and
smaller pulmonary vessels. Examples of CLE and PSE, as
well as normal tissue (NT), are shown in Fig. 1.

Common computerized approaches to emphysema quantifi-
cation in CT are based on the histogram of CT attenuation
values, and different quantitative measures of the degree of
emphysema can be derived from this histogram. The most
common measure is the relative area of emphysema (RA),
also referred to as emphysema index or density mask [3],
which measures the relative amount of lung parenchyma pixels
that have attenuation values below a certain threshold. Usu-
ally, thresholds in the range−856 to −960 Hounsfield units
(HU) are used. Measures based on the attenuation histogram
disregard the information present in the morphology of the
emphysema subtypes such as shape and size distribution of
bullae. This was exemplified in a recent clinical study that
reported discrepancies between visual scoring and RA for
assessing the craniocaudal distribution of the three emphysema
subtypes [5].

One way to objectively characterize the emphysema mor-
phology is to describe the local image structure using texture
analysis techniques [6], [7]. Uppaluriet al. introduced the
idea of classifying emphysema in lung CT images using
texture features [8]. Several authors followed this idea and
classified regions of interest (ROI)s of various lung disease
patterns using different texture features, mostly measures on
gray-level co-occurrence matrices (GLCM), gray-level run-
length matrices (GLRLM), and on the attenuation histogram,
and different classifiers [9]–[18]. Other examples of texture
features used in the lung tissue classification literature are: the
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gray-level difference method [17], [18]; discrete waveletframe
decomposition using third order B-splines [15]; convolving
with partial derivatives of the Gaussian and the Laplacian of
the Gaussian [12], [13]; gradient magnitude [16]; and fractal
dimension [8], [9], [14]. In some cases, shape, or geometric,
measures are also included in conjunction with the texture
features [10], [13], [16]. Most works use a mix of rotation
invariant and rotation variant texture features, whereas the
texture features used in this work are solely rotation invariant.

Most of the work on lung texture classification have one or
several explicit emphysema classes [8]–[11], [14]–[18]. Multi-
ple emphysema classes are defined by sub-dividing according
to disease severity [14], [16] or emphysema morphology [11],
[17], [18]. Chabatet al. discriminate between CLE and PLE
[11] whereas Prasadet al. distinguish between different stages
of emphysema, ranging from diffuse to bullous emphysema
[17], [18]. The work described in this paper has two emphy-
sema classes defined based on morphology, namely CLE and
PSE. PLE is not considered since only 2 out of 39 subjects
had PLE as leading pattern in the data used in the experiments.
The data comes from a population of (ex-)smokers, and PLE
is known to be more prevalent in subjects withα1-antitrypsin
deficiency than in subjects with smoking-related COPD [2].

A trained classifier can be used for quantification by classi-
fying all pixels in the lung field. In [9], [10], [13], [14], [16]–
[18] the full lung is classified either by labeling complete ROIs
[9], [13], [14] or by labeling individual pixels [10], [16]–[18].
Xu et al. report the percentage of different disease patterns
present in a few subjects, but these quantitative measures are
not evaluated further [14]. Parket al. quantify emphysema by
a weighted sum of relative emphysema class areas [16], and
it is to our knowledge the only emphysema based quantitative
study on a group of subjects in the lung CT texture analysis
literature.

This paper proposes two new ideas in the area of lung
texture analysis in CT images. The specific application is
emphysema quantification, but the ideas are also applicableto
other lung disease patterns. Preliminary versions of the work
presented here appeared in [19] and [20].

The first idea is to use local binary patterns (LBP) originally
formulated by Ojalaet al. [21] as lung texture features. LBP
unify structural and statistical information by a histogram of
LBP codes that correspond to micro-structures in the image
at different scales. LBP have shown promising results in
various applications in computer vision and have successfully
been applied in a small number of other medical image
analysis tasks, e.g., in mammographic mass detection [22] and
magnetic resonance image analysis of the brain [23]. In [19],
we showed that histogram dissimilarity measures between LBP
feature histograms in ak nearest neighbor (kNN) classifier [24]
can discriminate between emphysematous and normal tissue.

The second idea is to fuse the posterior probabilities ob-
tained from a classification of all pixels in the lung field into
quantitative measures of emphysema severity. Texture based
classification allows for quantification of different emphysema
subtypes, which may be important in phenotyping emphysema
for increased understanding of COPD. Further, texture features
may be less influenced by inspiration level and noise compared

(a) (b) (c)

Fig. 1. Examples of different lung tissue patterns in CT shown with the
window setting−600/1500 HU [4]. (a) Normal tissue (NT). (b) Centrilobular
emphysema (CLE). (c) Paraseptal emphysema (PSE). The whitearea in the
left part of image (c) is the exterior of the lung.

to, e.g., RA, which uses intensity in single pixels. In [20],we
showed that this approach agrees well with the outcome of
PFTs, achieving a significant correlation. Two fusion schemes
are considered in this paper; mean class posterior (MCP) and
relative class area (RCA). The second fusion scheme, RCA,
is related to the fusion scheme in [16] that uses a weighted
sum of relative class areas. The difference is that we consider
each relative class area individually.

The proposed system is evaluated in two ways; ROI clas-
sification and emphysema quantification on subject level. A
data set comprising 2D high resolution CT (HRCT) slices with
manually annotated ROIs is used for these purposes. The LBP
features are compared to two other sets of features, one based
on a Gaussian filter bank (GFB) and one comprising measures
on GLCM, GLRLM, and the attenuation histogram.

II. M ETHODS

The proposed system for emphysema quantification relies
on texture classification in local ROIs in the CT images.
Three types of texture features are considered, LBP, GFB,
and a set of features based on GLCM, GLRLM, and the
attenuation histogram. Section II-A describes LBP, and Section
II-B describes GFB. Measures on GLCM and GLRLM are the
most commonly used features in lung texture classification,
and they are therefore not described in detail here. We refer
to [6], [25] for a detailed description and to [8], [11], [16]–
[18] for examples of applications. Section II-C describes
how the texture in the ROIs is characterized by computing
distributions of features, or feature histograms, and Section
II-D presents a combined measure of histogram dissimilarity
between the feature histograms, used to discriminate ROIs
with a kNN classifier. Finally, Section II-E describes how
emphysema is quantified in the CT images by fusing pixel
posterior probabilities output by akNN classifier trained on a
small set of ROIs.

A. Local binary patterns

LBP were originally proposed by Ojalaet al. as a gray-scale
invariant measure for characterizing local structure in a3× 3
pixel neighborhood [26]. Later, a more general formulation
was proposed that further allowed for multi-resolution analysis
and rotation invariance [21]. We use the formulation given in
[21]. The LBP are obtained by thresholding samples in a local
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Fig. 2. Illustration of LBP. (a) The filter is defined by two parameters;
the circle radiusR and the number of samplesP on the circle. (b) Local
structure is measured w.r.t. a given pixel by placing the center of the circle
in the position of that pixel. (c) The samples on the circle are binarized by
thresholding with the intensity in the center pixel as threshold value. Black is
zero and white is one. The example image shown in (b) has an LBPcode of
124. (d) Rotating the example image in (b) ninety degrees clock-wise reduces
the LBP code to 31 which is the smallest possible code for thisbinary pattern.
This principle is used to achieve rotation invariance.

Fig. 3. Various micro-structures measured by LBP. The gray circle indicates
the center pixel. Black and white circles are binarized samples; black is zero
and white is one.

neighborhood with respect to the center pixel intensity andis
given by

LBP (x; R, P ) =
P−1
∑

p=0

H(I(xp) − I(x))2p (1)

where I is an image, x is the center pixel,xp =
[−R sin(2πp/P ), R cos(2πp/P )]T + x are P local samples
taken at a radiusR aroundx, and H(·) is the Heaviside
function. As long as the relative ordering among the gray-
scale values in the samples does not change, the output of (1)
stays the same; hence, LBP are invariant to any monotonic
gray-scale transformation. The application of the LBP filter is
illustrated in Fig. 2. Note that, by choosing a fixed sample
position on the circle as the “leading bit”, in this case the
right-most sample, the thresholded samples can be interpreted
as bits, and aP bit binary number can be computed.

LBP measure the local structure by assigning unique iden-
tifiers, the binary number, to various micro-structures in the
image. Thus, LBP capture many structures in one unified
framework. In the example in Fig. 2(b), the local structure is a
vertical edge with a leftward intensity gradient. Other micro-
structures are assigned different LBP codes, e.g., cornersand
spots as illustrated in Fig. 3. By varying the radiusR and
the number of samplesP , the structures are measured at
different scales, and LBP allows for measuring large scale
structures without smoothing effects, as is, e.g., the casefor
Gaussian based filters. We expect emphysematous tissue to
contain more edges and homogeneous dark areas compared
to normal, healthy tissue. Further, the micro-structures are
expected to exist at different scales and frequencies according
to the severity of the disease state.

Rotation invariant LBP are achieved by “rotating the circle”

until the lowest possible binary number is found

LBP ri(x; R, P ) = min
i

(ROR(LBP (x; R, P ), i)) (2)

for i = 0, . . . , P − 1. ROR(b, i) performsi circular bit-wise
right shifts on theP -bit binary numberb. When using (2), the
horizontal edge and the vertical edge in Fig. 3 are assigned the
same LBP code, namely 31. We will use the LBP formulation
in (2) in all experiments.

B. Gaussian filter bank

The second type of texture features are computed using a
rotation invariant GFB and are based on convolving the image
with the Gaussian function

G(x; σ) =
1

2πσ2
exp

(

−
||x||2

2

2σ2

)

(3)

whereσ is the standard deviation, or scale.
Sluimeret al. used a similar GFB comprising both rotation

variant and invariant filters [12], [13]. Since rotation invariant
LBP are used in this work, the GFB we compare with consists
of the rotation invariant filters from [12], [13]; Gaussian and
Laplacian of the Gaussian, augmented with two more rotation
invariant filters; gradient magnitude, which is also used onthe
original data in [16], and Gaussian curvature.

Letting Lx andLy denote the first order derivatives of the
convolved imageL = I ∗ G(x; σ), and Lxx, Lyy and Lxy

denote the second order derivatives, the four base filters in
the GFB are as follows: the Gaussian function (3) itself, the
Laplacian of the Gaussian

∇2G(x; σ) = Lxx + Lyy, (4)

gradient magnitude

||∇G(x; σ)||2 =
√

L2
x + L2

y, (5)

and Gaussian curvature

K(x; σ) = LxxLyy − L2

xy. (6)

C. Feature histograms

Based on the feature values in an ROI, obtained either by
computing rotation invariant LBP (2) in all pixels in the ROI
or by applying one of the GFB filters (3), (4), (5), or (6), a
feature histogram,f(ROI), is computed.

For LBP, the computed LBP codes are directly accumulated
into a histogram with the number of bins determined by the
number of samplesP . In the case of GFB, we employ an
adaptive binning principle similar to that of [26]; the total
feature distribution across all ROIs in the training set is made
approximately uniform. Consequently, densely populated areas
in feature space are quantized with a high resolution while
sparse areas are quantized with a low resolution. The number
of bins is set to⌊ 3

√

Np⌋, whereNp is the number of pixels in
the ROI.

As noted previously, LBP are invariant to any monotonic
gray-scale transformation of the image. This is, however, not
always desirable when dealing with CT images, where values
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Fig. 4. Examples of feature histograms. (a, d, g, j) Are computed from the
NT ROI in Fig. 1(a), (b, e, h, k) from the CLE ROI in Fig. 1(b), and (c, f,
i, l) from the PSE ROI in Fig. 1(c). (a-c) Joint LBP and intensity histograms
for R = 1 and P = 8. (d-f) LBP histograms forR = 1 and P = 8. (g-
i) Gaussian function filter response histograms forσ = 0.5. (j-l) Gradient
magnitude filter response histograms forσ = 1.

are measurements of a physical property of the tissue displayed
[12]. Therefore, we include intensity information in the feature
histogram by forming the joint histogram between the LBP
codes and the intensities in the center pixels. The intensities
are binned using the same adaptive principle as used for the
GFB filter values [26].

Examples of feature histograms computed from the three
different ROIs in Fig. 1 are shown in Fig. 4. Only few
bins contain the mass in the LBP histograms, and these bins
correspond to different micro-structures such as edges, corners,
and spots, as indicated with arrows in Fig. 4(d). One of the
discriminating bins when comparing the NT ROI to the CLE
ROI is the edge bin as expected, see Fig. 4(d) and Fig. 4(e).
The joint LBP and intensity histogram captures information
about at which intensities the different micro-structuresreside,
thus improving discrimination of the NT ROI from the CLE
ROI when, e.g., looking at the edge bin in Fig. 4(a) and Fig.
4(b).

D. Classifier

The feature histograms are used to classify ROIs or center
pixels of ROIs. For this purpose, we use thekNN classifier
[24] with the distance between two ROIs being a combined

histogram dissimilarity between feature histograms.kNN is
the natural classifier of choice when working in a distance
representation of objects, and it is also the classifier employed
in the LBP literature [21], [26]. Further,kNN is a non-
parametric classifier and therefore able to handle multi-modal
class distributions in feature space, which might be the case in
lung texture classification. For example, an emphysema class
containing samples from different disease stages might contain
patterns of varying bullae sizes and varying number of edges,
giving rise to a multi-modal class distribution.

Each ROI is represented by a set of feature histograms.
When using LBP, the set comprises feature histograms that are
measured with different radii for multi-scale analysis. When
using GFB, the set comprises feature histograms measured
with different filters at different scales. Dissimilarities be-
tween ROIs are expressed as dissimilarities between feature
histogram sets

Dset(ROIj , ROIk) =

Nf
∑

i

D(fi(ROIj), fi(ROIk))

whereNf is the number of histograms,D(·, ·) is a histogram
dissimilarity measure, andfi(·) are individual feature his-
tograms. In this paper, we use negated histogram intersection
[27] as histogram dissimilarity measure

D(H, K) = −

Nb
∑

i=1

min(Hi, Ki)

whereH and K are histograms each withNb bins. In this
work, all feature histograms are normalized to sum to one,
thusD(·, ·) ∈ [−1, 0].

We use a posterior probability estimator for thekNN classi-
fier that includes distances to prototypes in the estimation. A
principle similar to [28] is employed; the estimation is based
on the distance to then’th nearest prototype of each class
where n is the number of prototypes of the majority class
within the k nearest neighbors ofx. The posterior probability
of classωi given pixelx is therefore given by

P (ωi|x) =
|Dset(ROI(x), ROIωi

n )|
∑Nc

j=1
|Dset(ROI(x), ROIωj

n )|
(7)

whereNc is the number of classes, ROIωi

n is then’th nearest
prototype of classωi, and ROI(x) is the ROI centered onx.

E. Emphysema quantification

Prior to classification of the lung field, the lung parenchyma
pixels are segmented in the HRCT slice using a combination
of thresholding and connected component analysis. Manual
editing was needed afterwards in one third of the cases and
required simple outlining of a few of the larger airways. In
principle, automated methods such as [29], [30] could be used
here instead. We denote the obtained segmentationS. Each
segmented lung parenchyma pixel is classified by classifying
the ROI centered on the pixel.

It should be noted that pixels that are not part of the lung
segmentationS are not classified, but they can still contribute
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to the classification. For example, part of the exterior of the
lung is in the local neighborhood when classifying a pixel
at the border of the lung. In this way, all potentially relevant
structural information is incorporated, such as proximityto the
border of the lung or to the large vessels and airways.

The pixel probabilities are fused to obtain one measure
for the complete lung field that can be used for emphysema
quantification. There are several ways of doing this, e.g.,
averaging, voting, or the maximum rule [31]. In this work, we
evaluate averaging of soft and hard classification results.The
considered quantitative measures for emphysema are the mean
class posterior (MCPωi

) and the relative class area (RCAωi
).

MCPωi
is given by

MCPωi
=

1

|S|

∑

xj∈S

P (ωi|xj) (8)

where |S| is the number of lung parenchyma pixels in seg-
mentationS and P (ωi|xj) is obtained using (7). RCAωi

is
given by

RCAωi
=

1

|S|

∑

xj∈S

δ(arg max
c

P (ωc|xj) − i) (9)

whereδ(·) denotes the Kronecker delta function.

III. E XPERIMENTS AND RESULTS

A. Data

The data comes from an exploratory study carried out at
the Department of Respiratory Medicine, Gentofte University
Hospital [32] and consist of CT images of the thorax acquired
using General Electric equipment (LightSpeed QX/i; GE
Medical Systems, Milwaukee, WI, USA) with four detector
rows. A total of 117 HRCT slices were acquired by scanning
39 subjects in the upper, middle, and lower lung. The CT
scanning was performed using the following parameters: in-
plane resolution0.78×0.78 mm, 1.25 mm slice thickness, tube
voltage 140 kV, and tube current 200 mAs. The slices were
reconstructed using a high spatial resolution (bone) algorithm.

Prior to CT imaging, the subjects underwent PFTs, and
both the forced vital capacity (FVC) and the forced expiratory
volume in one second (FEV1) were measured [33]. FEV1 is
adjusted for age, sex, and height by dividing with a predicted
value according to these three parameters, thereby obtaining
FEV1%pred.

The 39 subjects were divided into three groups: 9 healthy
lifelong non-smokers (referred to as never-smokers), 10 smok-
ers without COPD (referred to as healthy smokers), and 20
smokers diagnosed with moderate or severe COPD (referred
to as COPD smokers). The COPD diagnosis was based on the
recorded PFTs and done according to the Global Initiative for
Chronic Obstructive Lung Disease criteria [1] as follows: no
COPD, defined as FEV1/FVC ≥ 0.7 and FEV1%pred≥ 80%;
moderate to severe COPD, defined as FEV1/FVC < 0.7
and 30% ≤ FEV1%pred < 80%. Of the 39 subjects, 19
were women and 20 were men. Table I summarizes the
characteristics of the three groups.

An experienced chest radiologist and a CT experienced
pulmonologist each assessed the leading pattern, either NT,

TABLE I

GROUP CHARACTERISTICS REPORTED AS MEAN VALUES, WITH STANDARD

DEVIATION IN PARENTHESES AND RANGE IN SQUARE BRACKETS. n IS THE

NUMBER OF SUBJECTS IN A GROUP.

Group Age FEV1 FEV1%pred FEV 1/FVC

Never- 59 3.15 103 80

smokers (9) (0.77) (9) (4)

n = 9 [47-73] [2.02-4.08] [93-121] [76-89]

Healthy 58 2.90 101 78

smokers (10) (0.47) (8) (5)

n = 10 [47-73] [1.95-3.60] [85-113] [68-78]

COPD 64 1.62 57 54

smokers (8) (0.57) (12) (7)

n = 20 [49-80] [0.94-2.73] [37-76] [42-67]

CLE, PSE, or PLE, in each of the 117 slices. Overall, the
observers agreed in 53% of the slices, and they agreed on the
emphysema class in 60% of slices where both decided on an
emphysema pattern.

168 non-overlapping ROIs were annotated manually in 25
of the subjects, representing the three classes: NT (59 obser-
vations), CLE (50 observations), and PSE (59 observations).
The NT ROIs were annotated in never-smokers, and the CLE
and PSE ROIs were annotated in healthy smokers and COPD
smokers within the area(s) of the leading emphysema pattern
by approximately marking the center pixel of the emphyse-
matous area. Square ROIs of a given width centered on the
marked pixel were subsequently extracted. PLE was excluded
due to under-representation in the data, only two subjects had
PLE as leading pattern. Therefore, we are dealing with the
three classesωi ∈ {NT, CLE, PSE} in all the experiments.

B. Feature and parameter selection

When using the GFB, feature selection is applied using
the sequential forward selection algorithm [24] for deciding
which filters at which scales to include. When using LBP,
several combinations of radii for multi-resolution analysis
are evaluated. In both approaches, differentk’s in the kNN
classifier as well as different ROI sizes are evaluated during
training. In all cases, parameters and feature sets are optimized
based on validation classification accuracy.

C. Classification of ROIs

Classification performance is evaluated by leave-one-
subejct-out error estimation on the set of manually annotated
ROIs. Six different approaches are evaluated and compared.

The ROIs are represented as points in a feature space, with
all features standardized to unit variance, in the first two
approaches, and Euclidean distance in the feature space is used
in the kNN classifier.

1) GFB1: The feature vector consists of the first four
central moments computed from histograms of GFB filter
responses. Standard histograms are used instead of applying
the adaptive binning approach described in Section II-C, and
the four filters described in Section II-B are used, resulting in
a 16 × scales dimensional feature vector. This set of features
resembles the features used in [12], [13].
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2) Intensity, Co-occurrence, and Run-length (ICR):The
feature vector consists of the following features: the firstfour
central moments of the intensity histogram; the gray-levelco-
occurrence matrix (GLCM) based measures contrast, corre-
lation, energy, entropy, and homogeneity [6], [25]; and the
gray-level run-length matrix (GLRLM) based measures short
run emphasis, long run emphasis, gray-level nonuniformity,
run-length nonuniformity, and run percentage [6], [25]. The
resulting feature vector is 14 dimensional. This set of features
resembles the features used in [8], [9], [11], [14], [16]–[18].

The remaining four approaches all use the methods de-
scribed in Sections II-C and II-D with different feature his-
tograms.

3) INT: Intensity histograms.
4) GFB2: GFB filter response histograms.
5) LBP1: Basic rotation invariant LBP histograms.
6) LBP2: Joint 2D LBP and intensity histograms.
In each leave-out trial, all ROIs from one subject are held

out and used for testing. The remaining subjects are separated
into a training set and a validation set. In this separation,
balanced class distributions are ensured by placing half the
subjects representing one class in the training set and the
rest in the validation set. The optimal parameter setting is
learned using the training and validation sets and can differ
for each test subject. Subsequently, the ROIs in the test setare
classified using the optimal parameter setting and all the ROIs
in the training set and validation set as prototypes in thekNN
classifier.

In GFB1 and GFB2, the following scales are used for
all filters: σ = {0.5, 1, 2, 4, 8} pixels. In ICR, GLCM and
GLRLM are computed using the orientations{0, 45, 90, 135}◦

and the lengths{1, 2, . . . , 5} pixels, and the following binnings
of intensity values are evaluated:{16, 32, 64} number of
bins. The GLCMs are symmetric and mean GLCM measures
across orientation and length are used [11], [16]. GLRLM are
computed using the Gray Level Run Length Matrix Toolbox
[34], and mean GLRLM measures across orientation are used.
In LBP1 and LBP2, the following radii and corresponding
number of samples are used:R = {1, 2} pixels andP =
{8, 16} samples. Common parameters considered for all six
approaches are as follows: ROI size= {31×31, 41×41, 51×
51} pixels and number of neighbors in thekNN classifier
k = {1, 2, . . . , 10}.

The estimated classification accuracies of the six approaches
are summarized in Table II. LBP2 performs best, achieving a
classification accuracy of 95.2%. However, it is not signifi-
cantly different (p = 0.72), according to a McNemar’s test
[35], from the second best approach, GFB2, which achieves
an accuracy of 94.0%. As expected, including intensity is
important. This is seen in the performance gain between
LBP1 and LBP2. In fact, intensity alone performs better than
LBP alone, as seen when comparing INT to LBP1. LBP2
performs significantly better than the four approaches GFB1,
ICR, INT, and LBP1 (p < 0.05). We will focus on the two best
performing approaches, GFB2 and LBP2, in the remaining part
of Section III.

The confusion matrices in Table III show that LBP2 and
GFB2 generally agree on the class labels. Further, GFB2 never

TABLE II

ROI CLASSIFICATION ACCURACY AND p-VALUE FOR DIFFERENCE WITH

LBP2 ACCORDING TOMCNEMAR’ S TEST

Approach Accuracy p-value

GFB1 61.3 < 10−4

ICR 89.3 0.016

INT 87.5 0.004

GFB2 94.0 0.724

LBP1 79.2 < 10−4

LBP2 95.2 -

TABLE III

CONFUSION MATRICES SHOWING THE TRUE LABEL(ROWS) VS. LABEL

ASSIGNED BY THEkNN CLASSIFIER(COLUMNS) FOR THE TWO BEST

PERFORMING APPROACHES.

LBP2

NT CLE PSE

NT 55 0 4

CLE 1 49 0

PSE 2 1 56

GFB2

NT CLE PSE

NT 55 0 4

CLE 2 48 0

PSE 4 0 55

mistakes the emphysema classes, and LBP2 only labels a
PSE pattern as CLE once. The agreement between the two
approaches is further investigated in Section III-D.

The parameter settings and filters that were most often se-
lected in the leave-one-subject-out error estimation, forLBP2
and GFB2, are shown in Table IV. The tendency is small scale
features, small ROIs, and smallk.

D. Parenchyma classification

In this section, results of applying the trained classifiersto
all pixels within the lung fields are compared for LBP2 and
GFB2.

Only one parameter setting is considered for each repre-
sentation based on the most frequent parameters in Table
IV. For LBP2, we use{LBP ri(x; R = 1, P = 8), k =
1, ROI size= 31 × 31}, and for GFB2, we use{{G(x; σ =
0.5), ||∇G(x; σ = 1)||2}, k = 1, ROI size= 31×31}. The set
of annotated ROIs serve as prototypes in thekNN classifier.
When classifying the HRCT slices from a particular subject,
all the ROI prototypes coming from that same subject are left
out in thekNN classifier.

Fig. 5 shows examples of the resulting posterior class
probabilities assigned by the classifiers in a never-smoker
HRCT slice and a COPD smoker HRCT slice. The never-
smoker has many high NT probability pixels assigned by both
LBP2 and GFB2 as seen in Fig. 5(c) and Fig. 5(d), whereas
the COPD smoker has many high CLE probability pixels and
some high PSE probability pixels, see Figs. 5(i), 5(j), 5(m),
and 5(n). For the shown COPD smoker, the consensus reading
of the leading pattern is CLE in all three slices. The LBP2
posterior seems more localized than the GFB2 posterior. See,
e.g., the low NT posterior area in the anterior part of the left
lung in the slice in Figs. 5(e) and 5(f) and the high CLE
posterior area in the same positions in Figs. 5(i) and 5(j).
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TABLE IV

MOST FREQUENTLY SELECTED PARAMETERS AND FILTER COMBINATIONS FORLBP2 AND GFB2 IN THE LEAVE-ONE-SUBJECT-OUT EXPERIMENTS IN

SECTION III-C. ONLY PARAMETERS AND FILTERS SELECTED IN AT LEAST20%OF THE LEAVE-OUT TRIALS ARE SHOWN. OTHER GFB2FILTERS THAT

ARE SELECTED TOGETHER WITH THE REPORTEDGFB2FILTER COMBINATIONS IN LESS THAN20%OF THE INDIVIDUAL EXPERIMENTS ARE NOT SHOWN.
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56% 20% 24% 96% 96% 92% 28% 24% 28% 64% 20% 96%

TABLE V

CONFUSION MATRIX BETWEENGFB2AND LBP2 ACROSS ALL SUBJECTS

FOR ALL LUNG PARENCHYMA PIXELS. THE NUMBERS REPORTED ARE IN

PERCENTAGE OF TOTAL NUMBER OF LUNG PARENCHYMA PIXELS.

LBP2 NT LBP2 CLE LBP2 PSE

GFB2 NT 48.2 1.0 4.1

GFB2 CLE 2.9 16.8 2.5

GFB2 PSE 2.9 0.4 21.3

Correlating the class posteriors shows a high degree of
agreement between LBP2 and GFB2;r = 0.93 (p < 10−4)
when correlatingP (NT|x) of the two classifiers,r = 0.94
(p < 10−4) in the case ofP (CLE|x), andr = 0.91 (p < 10−4)
in the case ofP (PSE|x). Further, class label agreements
between LBP2 and GFB2 in each lung parenchyma pixel are
shown in the confusion matrix in Table V. This result is based
on a hard classification obtained by applying the maximum a
posteriori rule in each pixel. The two classifiers generallyare
in good agreement; in 86.3% of the pixels, the two classifiers
agree on the class label.

E. Emphysema quantification

In this section, we evaluate the value of fusing pixel poste-
rior probabilities, computed using the proposed classification
system, into a single measure for emphysema.

The full lung classification results of Section III-D are
turned into quantitative measures of emphysema using MCPωi

according to (8) and using RCAωi
according to (9). These

measures are computed across the three HRCT slices rep-
resenting a subject. We evaluate the obtained measures by
correlating with FEV1%pred, which is one of the standard
PFTs for diagnosing subjects with COPD [1]. The common
CT based measure RA is also included in the evaluation, in this
case using a threshold of−910 HU [3], [5], [32] (RA910). The
results are shown in Table VI where the NT based measures
achieve correlation coefficients ranging fromr = 0.75 to
r = 0.77. For comparison, RA910 correlates significantly
worse with FEV1%pred than the NT based measures do
(p < 0.05) according to a Hotelling/Williams test [36]. In

TABLE VI

CORRELATION OFCT BASED EMPHYSEMA MEASURES WITH

FEV1%PRED. THE p-VALUES OF THE CORRELATIONS ARE SHOWN IN

PARENTHESES.

Measure r

LBP2

MCPNT 0.77 (p < 10−4)

MCPCLE -0.74 (p < 10−4)

MCPPSE -0.40 (p = 0.011)

RCANT 0.77 (p < 10−4)

RCACLE -0.78 (p < 10−4)

RCAPSE -0.66 (p < 10−4)

GFB2

MCPNT 0.76 (p < 10−4)

MCPCLE -0.79 (p < 10−4)

MCPPSE -0.28 (p = 0.088)

RCANT 0.75 (p < 10−4)

RCACLE -0.74 (p < 10−4)

RCAPSE -0.66 (p < 10−4)

RA910 -0.62 (p < 10−4)

the Hotelling/Williams test, we correct for the differencein
signs.

All measures, except LBP2 and GFB2 based MCPPSE,
separate the group of COPD smokers from the combined group
of never-smokers and healthy smokers according to a rank
sum test (p < 0.05). The separation can also be seen for
LBP2 based MCPNT in Fig. 6(a). The figure also shows that
the individual features of the joint LBP and intensity feature
histogram measure different properties of the parenchyma at
subject level. Using intensity alone, i.e., parenchyma density,
results in the picture shown in Fig. 6(b), and using LBP alone,
i.e., parenchyma micro-structures, results in the pictureshown
in Fig. 6(c).

IV. D ISCUSSION ANDCONCLUSION

The proposed classification system using LBP2 achieves an
ROI classification accuracy of 95.2%, see Table II, with an NT
sensitivity and specificity of 97.3% and 93.2% respectively.
This is better than using GFB or ICR, and is within the
75− 100% range of NT sensitivities and specificities reported
in the literature [9], [11]–[16]. The experiments revealedthat
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(a) A never-smoker (b) A COPD smoker

(c) LBP2 NT posterior (d) GFB2 NT posterior (e) LBP2 NT posterior (f) GFB2 NT posterior

(g) LBP2 CLE posterior (h) GFB2 CLE posterior (i) LBP2 CLE posterior (j) GFB2 CLE posterior

(k) LBP2 PSE posterior (l) GFB2 PSE posterior (m) LBP2 PSE posterior (n) GFB2 PSE posterior

Fig. 5. An HRCT slice from a never-smoker and from a COPD smoker together with posterior probabilities computed in each lung parenchyma pixel.
White is high probability and black is low probability. (a, b) Original HRCT slices shown with the window setting−600/1500 HU [4]. (c, g, k) LBP2 based
posteriors for the never-smoker. (d, h, l) GFB2 based posteriors for the never-smoker. (e, i, m) LBP2 based posteriors for the COPD smoker. (f, j, n) GFB2
based posteriors for the COPD smoker.

using LBP in isolation does not work well in the presented
application. This was to be expected, since LBP by design are
invariant to monotonic intensity transformations and therefore
discard the density information contained in the CT image
intensities. Including intensity information via the joint LBP
and intensity histogram combines complementary information
in the form of micro-structures and densities. Hereby it is
measured at which densities the different micro-structures
reside which improves discrimination considerably. This is
illustrated when comparing Figs. 4(a) and 4(b) to Figs. 4(d)
and 4(e) where the differences between the joint histograms

4(a) and 4(b) are much more obvious than between the LBP
histograms 4(d) and 4(e). Other feature sets, like GFB, also
include intensity and hereby also mix structure and density
information. However, obtaining a similar representationto
LBP2 in GFB, i.e., joint histograms of structure and density,
would require histograms of much higher dimensionality with
one dimension for each type of micro-structure such as edge,
blob, etc., potentially leading to problems with overfitting in
cases of limited number of training samples.

CT based computerized quantitative measures of emphy-
sema are often evaluated by correlating the obtained CT
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(a) LBP and intensity jointly, i.e., LBP2 based.
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(b) Intensity alone, i.e., INT based.
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(c) LBP alone, i.e., LBP1 based.

Fig. 6. MCPNT for all 39 subjects divided on the three groups; never-smokers,
healthy smokers, and COPD smokers. The dashed lines are connecting the
means of the three groups.

measures with other markers for disease, such as PFTs or
plasma biomarkers, in the clinical literature. A few examples
of such studies are: [32], [37]–[40]. In this paper, we have
performed a similar evaluation and correlated the proposed
quantitative measures with another marker for emphysema
in Section III-E, namely FEV1%pred, and in general the
correlations were strong, up to|r| = 0.79. It is known that
PFTs are noisy measurements [41], and that they are affected
by other phenomena than emphysema, e.g., inflammation in
the airways. Still, some degree of agreement between PFTs
and CT based emphysema measurements is expected. In
the future, we intend to further evaluate the proposed CT
based emphysema measures by utilizing more meta data. For

example, measures derived from blood samples, other PFTs,
or health status questionnaires [42] could be used.

Parket al. previously performed emphysema quantification
based on a hard classification of the lung parenchyma pixels.
A weighted sum of the relative areas of mild end severe
emphysema was used, and they reported a correlation of
−0.47 with FEV1%pred [16]. Based on the results of our
experiments, nothing conclusive can be stated about fusionof
soft versus fusion of hard classifications, i.e., (8) versus(9).
Both methods work well, and as seen in Table VI, all the NT
based measurements correlate significantly with FEV1%pred
with correlation coefficients in the ranger = 0.75 to r = 0.77.
It should be noted that in [16], the correlation between RA,
using a threshold of−950 HU, and FEV1%pred is−0.42. In
our data, agreement between CT and PFT generally seems to
be better with the correlation between RA910 and FEV1%pred
being−0.62. This fact, as well as the fact that we are dealing
with a broader range of subjects compared to [16], could
explain the difference in correlation level.

Different features may capture different information in the
CT images, and though the per pixel posterior probabilities
of LBP2 and GFB2 are highly correlated, there may still
be something to gain by combining the output of the two
classifiers. This was tested by combining the pixel posteriors
P (ωi|x) of LBP2 and GFB2 with the sum rule and the
maximum rule respectively [43], followed by posterior fusion
of the combined pixel posteriors. These results did not show
any significant improvement in correlation with FEV1%pred,
which indicates that the two classifiers indeed capture similar
information in the CT images.

In this work, we have done no preprocessing of the HRCT
slices prior to computing feature histograms. Instead, we have
relied on the filters to perform the necessary processing, e.g.,
noise smoothing in the GFB by selecting the appropriateσ or
picking up certain micro-structures from the noisy background
in LBP by selecting the appropriate radius. It is up to the
training procedure to pick these settings.

Further, all available information has been taken into ac-
count in the feature histogram estimation by including all
pixels in the ROIs instead of first excluding, e.g., the vessels
[11], [14] or the airways [14]. Thus, also pixels outside the
lung fields and pixels from non-parenchyma structures within
the lungs contribute. This can be seen as an implicit way of
encoding context information in the feature histograms, with
the position being “near the border of the lung” or “near the
hilar area”. It may lead to slight overestimation of PSE at
the border, see Fig. 5, but in practice, this should not be a
real problem as long as the prototype set contains samples at
the border representing all classes. In our data, NT and CLE
ROIs were mainly annotated in the central parts of the lungs.
Nevertheless, the proposed classification system is capable
of discriminating between normal tissue and emphysematous
tissue within the lung, as seen in the confusion matrices for
LBP2 and GFB2 in Table III.

Fig. 6(a) reveals that very similar measures are obtained
for the never-smokers and the healthy smokers. One might
expect the healthy smokers measures to be slightly lower
than the never-smokers on the MCPNT scale due to early
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stages of emphysema not yet detectable by PFTs. Basing the
measurements only on intensity feature histograms resultsin
the healthy smokers having an even larger probability of NT as
seen in Fig. 6(b), indicating a difference in density for thetwo
groups. This corresponds well with recent results indicating
that lung parenchyma is more dense in healthy smokers than
in never-smokers possibly due to smoke induced inflammation
[40], [44]. On the other hand, basing the measurements solely
on LBP feature histograms results in a slight drift downwards
as seen in Fig. 6(c), suggesting that there may be structural
differences that can be captured at an early stage by LBP. As
described in Section II-A, LBP are gray-scale invariant and
therefore not affected by parenchymal density changes. This
also implies that the proposed classification system shouldbe
less sensitive to inspiration level as compared to, e.g., RA910.

Basing the discrimination of ROIs on dissimilarities be-
tween sets of feature histograms, using a combined his-
togram dissimilarity directly as distance in akNN classifier,
works well in this setting. Both LBP2 and GFB2 achieve
good ROI classification accuracies and high correlations with
FEV1%pred. Using full feature histograms differs from the
common approach of using measures derived from feature
histograms, such as moments of filter response histograms
or GLCM measures, as features in a feature space [8]–
[18]. Looking at Fig. 4, taking only the first four moments
of the GFB histograms could potentially discard valuable
information about the shape of the histograms such as the
presence of multiple mods. A previous comparative study of
texture features for classification reported similar findings on
two standard texture data sets [26]. In this work, we wanted
to exploit the full feature histograms and therefore used the
kNN classification framework with histogram dissimilarity as
distance, and LBP and GFB were shown to work very well
in this setting. It remains of course a possibility that in a dif-
ferent classification scheme, relying on features rather than on
dissimilarity measures, a different feature set would perform
as good as or even better than LBP. Alternatively, histogram
dissimilarities could be applied within the dissimilarity-based
classification schemes proposed by Pekalskaet al. [45].

The experiments carried out in this work are all done
on HRCT slices, but the general framework could easily
be extended to 3D. However, no true extension of rotation
invariant LBP to 3D exists. Two approximative extensions of
LBP to 3D are presented in [46], with the specific application
being temporal texture data. The first approach forms a helical
path in the temporal direction. This idea could be applied
in volumetric CT by, e.g., forming helical paths in various
directions and combining the resulting LBPs. The second
approach in [46] computes 2D LBPs in three orthogonal planes
and combines these.

In conclusion, we propose to use texture measures such as
LBP for quantitative analysis of pulmonary emphysema in CT
images of the lung. ROI classification experiments showed
good classification performance, with an accuracy of 95.2%,
and quantitative measures of emphysema derived by fusing
posterior probabilities achieved high correlation with PFT, up
to |r| = 0.79 (p < 10−4). Overall, LBP seem to perform
slightly better than a rotation invariant GFB, although the

difference was not significant in our experiments. MCPNT

correlated significantly better with pulmonary function than
the most common standard CT measure, RA, which suggests
that texture based measures may be better indicators of the
degree of emphysema. In addition, LBP seem to pick up
certain micro-structures that are more frequent in smokers,
including smokers who still have good lung function, than
in people who never smoked. This structural information
improves discrimination in our experiments and may also
improve sensitivity to early changes in lung tissue integrity.
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