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Quantitative Analysis of Pulmonary Emphysema
using Local Binary Patterns
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Abstract—We aim at improving quantitative measures of

emphysema in computed tomography (CT) images of the lungs.

Current standard measures, such as the relative area of emph
sema (RA), rely on a single intensity threshold on individua
pixels, thus ignoring any interrelations between pixels. &xture
analysis allows for a much richer representation that also akes
the local structure around pixels into account.

This paper presents a texture classification based systemrfo
emphysema quantification in CT images. Measures of emphysem
severity are obtained by fusing pixel posterior probabilies
output by a classifier. Local binary patterns (LBP) are used &
texture features, and joint LBP and intensity histograms ae used
for characterizing regions of interest (ROI)s. Classificaion is then
performed using ak nearest neighbor classifier with a histogram
dissimilarity measure as distance.

A 95.2% classification accuracy was achieved on a set a68
manually annotated ROIs comprising the three classes: noral
tissue, centrilobular emphysema, and paraseptal emphyseanThe

are not capable of detecting early stages of COPD [2]. Anothe
diagnostic tool that is gaining more and more attention ie-co
puted tomography (CT) imaging. CT is a sensitive method for
diagnosing emphysema, assessing its severity, and detagni
its subtype, and both visual and quantitative CT assessanent
closely correlated with the pathological extent of emphyae
[3].

In this work, we focus on the assessment of emphysema
in CT images. Emphysema lesions, or bullae, are visible in
CT images as areas of abnormally low attenuation values
close to that of air. In CT, emphysema can be classified into
three subtypes, or patterns, and we will adopt the naming
and definitions used in Webet al. [4]. These subtypes are
the following: centrilobular emphysema (CLE), defined as
multiple small low-attenuation areas; paraseptal emphgse

measured emphysema severity was in good agreement with a(PSE), defined as multiple low-attenuation areas in a single

pulmonary function test (PFT) achieving correlation coefftients

of up to |r| = 0.79 in 39 subjects. The results were compared to
RA and to a Gaussian filter bank, and the texture based measuse
correlated significantly better with PFT than RA did.

Index Terms— Emphysema, local binary patterns, quantitative
CT, texture analysis, tissue classification.

I. INTRODUCTION

layer along the pleura often surrounded by interlobulatasep
that is visible as thin white walls; and panlobular emphyaem
(PLE), defined as a low-attenuation lung with fewer and
smaller pulmonary vessels. Examples of CLE and PSE, as
well as normal tissue (NT), are shown in Fig. 1.

Common computerized approaches to emphysema quantifi-
cation in CT are based on the histogram of CT attenuation
values, and different quantitative measures of the degfee o

HRONIC obstructive pulmonary disease (COPD) is amphysema can be derived from this histogram. The most
growing health problem worldwide. In the United Statesommon measure is the relative area of emphysema (RA),

alone, it is the fourth leading cause of morbidity and mertaflso referred to as emphysema index or density mask [3],
ity, and it is estimated to become the fifth most burdeninghich measures the relative amount of lung parenchymasixel
disease worldwide by 2020 [1]. COPD is a chronic lunthat have attenuation values below a certain threshold- Usu
disease characterized by limitation of airflow. It compsisgo ally, thresholds in the range856 to —960 Hounsfield units
components: small airway disease and emphysema, whici{H#J) are used. Measures based on the attenuation histogram
characterized by gradual loss of lung tissue. Detection adigregard the information present in the morphology of the
quantification of emphysema is important, since it is thdugemphysema subtypes such as shape and size distribution of
to be the main cause of shortness of breath and disabilitydunllae. This was exemplified in a recent clinical study that
COPD. reported discrepancies between visual scoring and RA for
The primary diagnostic tool for COPD is spirometry byassessing the craniocaudal distribution of the three esgrhg
which various pulmonary function tests (PFT)s are perfarmeubtypes [5].
[1]. However, PFTs have a low sensitivity to emphysema andOne way to objectively characterize the emphysema mor-
phology is to describe the local image structure using textu
Copyright (c) 2009 IEEE. Personal use of this material ismied. ana|ysis techniques [6], [7]. Uppaludt al. introduced the
However, permission to use this material for any other psegpomust be . e - . . .
obtained from the IEEE by sending a request to pubs-peroms@ieee.org. idea of classifying emphysema in lung CT images using
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texture features [8]. Several authors followed this ided an
classified regions of interest (ROIl)s of various lung diseas
patterns using different texture features, mostly measore
gray-level co-occurrence matrices (GLCM), gray-level-run
length matrices (GLRLM), and on the attenuation histogram,
and different classifiers [9]-[18]. Other examples of tegtu
features used in the lung tissue classification literatteetae
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gray-level difference method [17], [18]; discrete wavdiaime

decomposition using third order B-splines [15]; convotyin

with partial derivatives of the Gaussian and the Laplacifin off

the Gaussian [12], [13]; gradient magnitude [16]; and fhct

dimension [8], [9], [14]. In some cases, shape, or geometric

measures are also included in conjunction with the texturg

features [10], [13], [16]. Most works use a mix of rotation (@ ) ©

invariant and rotation variant texture features, wherdas t

texture features used in this work are solely rotation iiadr Fig. 1. Examples of different lung tissue patterns in CT shawith the
Most of the work on lung texture classification have one ‘iwn?gﬁysiﬁqtg”?&ﬁgf/é‘;’oga':aiéﬂaﬁaiﬂwféﬂ??’SS(EP'T(EQ ml'ﬁbtﬂg"

several explicit emphysema classes [8]-[11], [14]-[18JUM |eft part of image (c) is the exterior of the lung.

ple emphysema classes are defined by sub-dividing according

to disease severity [14], [16] or emphysema morphology,[11]

[17], [18]. Chabatet al. discriminate between CLE and PLEto, e.g., RA, which uses intensity in single pixels. In [28F

[11] whereas Prasaet al. distinguish between different stageshowed that this approach agrees well with the outcome of

of emphysema, ranging from diffuse to bullous emphysenkdETs, achieving a significant correlation. Two fusion sceem

[17], [18]. The work described in this paper has two emphyare considered in this paper; mean class posterior (MCP) and

sema classes defined based on morphology, namely CLE aeldtive class area (RCA). The second fusion scheme, RCA,

PSE. PLE is not considered since only 2 out of 39 subjedtsrelated to the fusion scheme in [16] that uses a weighted

had PLE as leading pattern in the data used in the experimestsm of relative class areas. The difference is that we censid

The data comes from a population of (ex-)smokers, and Plech relative class area individually.

is known to be more prevalent in subjects with-antitrypsin The proposed system is evaluated in two ways; ROI clas-

deficiency than in subjects with smoking-related COPD [2].sification and emphysema quantification on subject level. A
A trained classifier can be used for quantification by classiata set comprising 2D high resolution CT (HRCT) slices with

fying all pixels in the lung field. In [9], [10], [13], [14], [&]- manually annotated ROls is used for these purposes. The LBP

[18] the full lung is classified either by labeling complet®@R features are compared to two other sets of features, ond base

[9], [13], [14] or by labeling individual pixels [10], [L6[28]. on a Gaussian filter bank (GFB) and one comprising measures

Xu et al. report the percentage of different disease patterne GLCM, GLRLM, and the attenuation histogram.

present in a few subjects, but these quantitative measuees a

not evaluated further [14]. Pasit al. quantify emphysema by Il. METHODS

alweighted sum of relative emphysema class areas [161' "_’mq'he proposed system for emphysema quantification relies
it is to our knowledge the only emphysema based quantltatlgﬁ texture classification in local ROIs in the CT images.

s_tudy on a group of subjects in the lung CT texture analysl"’ﬁree types of texture features are considered, LBP, GFB,
Ilterﬁyure. deas i and a set of features based on GLCM, GLRLM, and the
This paper proposes two new ideas in the area of lungqnation histogram. Section I1-A describes LBP, andiSec
texture analysis In ,CT_ Images. The specific appllca}tlon IEB describes GFB. Measures on GLCM and GLRLM are the
emphysemalquanuflcatlon, but th? 'P'eas are a_LIso apphd:ablq.nost commonly used features in lung texture classification,
other Iung g|sease patte(rjn_s. Preliminary versions of thIEkWQand they are therefore not described in detail here. We refer
presented here appeared in [19] and [20]. o [6], [25] for a detailed description and to [8], [11], [16]
The first idea is to use local binary patterns (LBP) orlgmall[18] for examples of applications. Section II-C describes

formulated by Ojaleet al [21] as lung texture features. LBPy ., the texture in the ROIs is characterized by computing
unify structural and statistical |nfqrmat|on by a h_|st0g|ra)_f distributions of features, or feature histograms, and iSect
LBZ_EOdeS thatlcorrisBpPonr::i to m|hcro-structur_e_s in the 'Imaﬂgb presents a combined measure of histogram dissimylarit
at different scales. ave shown promising results [ een the feature histograms, used to discriminate ROls
various applications in computer vision and have Succlgsiuy i 5 kNN classifier. Finally, Section II-E describes how

beeln gppliekd in a small number of other medical imagg, n sema is quantified in the CT images by fusing pixel
analysis tasks, e.g., n mammographlc mass dqtecnon (2] osterior probabilities output by kNN classifier trained on a
magnetic resonance image analysis of the brain [23]. In,[1 all set of ROIs.

we showed that histogram dissimilarity measures betwedn LB
feature histograms inlanearest neighboklN) classifier [24]
can discriminate between emphysematous and normal tiss

The second idea is to fuse the posterior probabilities ob-LBP were originally proposed by Ojakt al. as a gray-scale
tained from a classification of all pixels in the lung fielddnt invariant measure for characterizing local structure #>a3
guantitative measures of emphysema severity. Texturedbagéixel neighborhood [26]. Later, a more general formulation
classification allows for quantification of different emgleyna was proposed that further allowed for multi-resolutionlgsia
subtypes, which may be important in phenotyping emphysemad rotation invariance [21]. We use the formulation given i
for increased understanding of COPD. Further, texturaifeat [21]. The LBP are obtained by thresholding samples in a local
may be less influenced by inspiration level and noise congpare

fe_Local binary patterns
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e, ° L/‘ until the lowest possible binary number is found

1
.ef'%q) ¢ |e LBP"(x; R, P) = min(ROR(LBP(x; R, P).i))  (2)
0. % %\f fori=0,...,P—1. ROR(b,i) performsi circular bit-wise
@ ) @ right shifts on theP-bit binary numbeb. When using (2), the

horizontal edge and the vertical edge in Fig. 3 are assigmed t

Fig. 2. lllustration of LBP. (a) The filter is defined by two pareters; Same LBP code, namely 31. We will use the LBP formulation
the circle radiusR and the number of sampleB on the circle. (b) Local jn (2) in all experiments.

structure is measured w.r.t. a given pixel by placing thetereof the circle

in the position of that pixel. (c) The samples on the circle bhinarized by

thresholding with the intensity in the center pixel as thrdd value. Black is B, Gaussian filter bank

zero and white is one. The example image shown in (b) has andoBE of

124. (d) Rotating the example image in (b) ninety degreeskeldse reduces ~ The second type of texture features are computed using a

the LBP code to 31 which is the smallest possible code forltimary pattern. rotation invariant GEB and are based on convoIving the image
This principle is used to achieve rotation invariance. . . .
with the Gaussian function

1 x|[3
G(X;O') = Wexp ( — %) (3)

whereo is the standard deviation, or scale.
Sluimeret al. used a similar GFB comprising both rotation
Spot Corner Vertical edge  Horizontal edge variant and invariant filters [12], [13]. Since rotation amant
LBP are used in this work, the GFB we compare with consists
Fig. 3. Various micro-structures measured by LBP. The gieecindicates  of the rotation invariant filters from [12], [13]; Gaussianca
?nedcv(\elﬂitteer i[;l):)enléBlack and white circles are binarized damblack is zero Laplacian of the Gaussian, augmented with two more rotation
invariant filters; gradient magnitude, which is also usedhan
original data in [16], and Gaussian curvature.
neighborhood with respect to the center pixel intensity snd Letting L, and L, denote the first order derivatives of the

given by convolved imageL = I « G(x;0), and L,,, L,, and L,
P denote the second order derivatives, the four base filters in
LBP(x; R, P) = Z H(I(x,) — I(x))2? 1) the GFB are as follows: the Gaussian function (3) itself, the
=0 Laplacian of the Gaussian

where I is an image,x is the center pixel,x, = V?G(%;0) = Ly + Lyy, 4)
[~ Rsin(27p/ P), Rcos(2mp/P)]T + x are P local samples
taken at a radiusk aroundx, and H(-) is the Heaviside
function. As long as the relative ordering among the gray- IVG(x;0)||2 = /L2 + L2, (5)
scale values in the samples does not change, the outpi} of ( ‘
stays the same; hence, LBP are invariant to any monotosied Gaussian curvature
ray-scale transformation. The application of the LBP ffiige R 2
iglllugf[rated in Fig. 2. Note that, by choosing a fixed sample K(x;0) = LoaLyy = Lay, (©)
position on the circle as the “leading bit”", in this case the )
right-most sample, the thresholded samples can be intetpreC- Feature histograms
as bits, and & bit binary number can be computed. Based on the feature values in an ROI, obtained either by
LBP measure the local structure by assigning unique idesemputing rotation invariant LBP (2) in all pixels in the ROI
tifiers, the binary number, to various micro-structureshe t or by applying one of the GFB filters (3), (4), (5), or (6), a
image. Thus, LBP capture many structures in one unifiéelature histogramf(ROI), is computed.
framework. In the example in Fig. 2(b), the local structiw@i  For LBP, the computed LBP codes are directly accumulated
vertical edge with a leftward intensity gradient. Other raic into a histogram with the number of bins determined by the
structures are assigned different LBP codes, e.g., coargts number of samples”. In the case of GFB, we employ an
spots as illustrated in Fig. 3. By varying the radifsand adaptive binning principle similar to that of [26]; the tbta
the number of sample®, the structures are measured aeature distribution across all ROls in the training set edm
different scales, and LBP allows for measuring large scad@proximately uniform. Consequently, densely populateds
structures without smoothing effects, as is, e.g., the éaise in feature space are quantized with a high resolution while
Gaussian based filters. We expect emphysematous tissusgdarse areas are quantized with a low resolution. The number
contain more edges and homogeneous dark areas compaifdains is set toH/N_pJ, whereN,, is the number of pixels in
to normal, healthy tissue. Further, the micro-structures ahe ROI.
expected to exist at different scales and frequencies ditwpr ~ As noted previously, LBP are invariant to any monotonic
to the severity of the disease state. gray-scale transformation of the image. This is, howevet, n
Rotation invariant LBP are achieved by “rotating the citclealways desirable when dealing with CT images, where values

gradient magnitude
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histogram dissimilarity between feature histogramisN is

the natural classifier of choice when working in a distance
representation of objects, and it is also the classifier eyeul

in the LBP literature [21], [26]. FurtherkNN is a non-
parametric classifier and therefore able to handle mulitaho
class distributions in feature space, which might be the aas
lung texture classification. For example, an emphysems clas
containing samples from different disease stages mightaon
patterns of varying bullae sizes and varying number of edges
giving rise to a multi-modal class distribution.

Each ROI is represented by a set of feature histograms.
When using LBP, the set comprises feature histograms that ar
@ © 0 me_asured with different rao_lii for multi-sca_lle analysis. &lh
using GFB, the set comprises feature histograms measured
with different filters at different scales. Dissimilargiebe-
tween ROIs are expressed as dissimilarities between &atur
histogram sets

Gaussian function Gaussian function Gaussian function

Ny
(9) (h) [0) Dset(ROIja ROIk) = ZD(fi(RO|j)7fi(RO|k))

where N is the number of histogram®)(-, -) is a histogram
dissimilarity measure, and;(-) are individual feature his-
tograms. In this paper, we use negated histogram inteogecti
[27] as histogram dissimilarity measure

Gradient magnitude Gradient magnitude Gradient magnitude Ny
0 (k) () D(H,K) = - min(H;, K)
. . . i=1
Fig. 4. Examples of feature histograms. (a, d, g, j) Are caiegdrom the !

NT ROl in Fig. 1(a), (b, e, h, k) from the CLE ROl in Fig. 1(b),dufc, f, where H and K are histograms each with/, bins. In this

i, I) from the PSE ROI in Fig. 1(c). (a-c) Joint LBP and intepdhistograms work, all feature histograms are normalized to sum to one,
for R =1 and P = 8. (d-f) LBP histograms forR = 1 and P = 8. (g-

i) Gaussian function filter response histograms doe= 0.5. (j-I) Gradient thUSD('v ) € [_17 O_]- N ) )
magnitude filter response histograms éoe= 1. We use a posterior probability estimator for N classi-

fier that includes distances to prototypes in the estimation

) ) ) principle similar to [28] is employed; the estimation is bds
are measurements of a physical property of the tissue ¢ispla g, the distance to the'th nearest prototype of each class
[12]. Therefore, we include intensity information in th@fere \\here n is the number of prototypes of the majority class

histogram by forming the joint histogram between the LBRjiiin the k nearest neighbors of. The posterior probability
codes and the intensities in the center pixels. The infessit ¢ classw; given pixelx is therefore given by

are binned using the same adaptive principle as used for the .
GFB filter values [26]. Pwilx) = ]J[Dset(ROKX)v ROI7')

Examples of feature histograms computed from the three >_i=1 | Dset (ROI(x), ROL) |
g!ﬁerent R.Ols in Fig. .1 are show_n in Fig. 4. Only fewwhereNc is the number of classes, RQIis then'th nearest
ins contain the mass in the LBP histograms, and these bins :

i ; prototype of classy;, and RO[x) is the ROI centered oR.

correspond to different micro-structures such as edgesecs,
and spots, as indicated with arrows in Fig. 4(d). One of the
discriminating bins when comparing the NT ROI to the CLEE. Emphysema quantification
ROl is the edge bin as expected, see Fig. 4(d) and Fig. 4(e)Prior to classification of the lung field, the lung parenchyma
The joint LBP and intensity histogram captures informatiopixels are segmented in the HRCT slice using a combination
about at which intensities the different micro-structureside, of thresholding and connected component analysis. Manual
thus improving discrimination of the NT ROI from the CLEediting was needed afterwards in one third of the cases and
ROI when, e.g., looking at the edge bin in Fig. 4(a) and Figequired simple outlining of a few of the larger airways. In

()

4(b). principle, automated methods such as [29], [30] could bé use
here instead. We denote the obtained segmentatioBach
D. Classifier segmented lung parenchyma pixel is classified by classjfyin

The feature histograms are used to classify ROIs or centBf RO! centered on the pixel.
pixels of ROIs. For this purpose, we use ti¥N classifier It should be noted that pixels that are not part of the lung

[24] with the distance between two ROIls being a combineggmentatiort’ are not classified, but they can still contribute
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L . TABLE |

to the classification. For example, part of the exterior & th

.. . . . ROUP CHARACTERISTICS REPORTED AS MEAN VALUESNITH STANDARD
lung is in the local neighborhood when classifying a pixe

. A DEVIATION IN PARENTHESES AND RANGE IN SQUARE BRACKETSN IS THE
at the border of the lung. In this way, all potentially releva
. . . S NUMBER OF SUBJECTS IN A GROUP

structural information is incorporated, such as proxinitghe

border of the lung or to the large vessels and airways. Group Age FEV, FEV1%pred FEV/FVC
The pixel probabilities are fused to obtain one measure=g =" 59 315 103 80
for the complete lung field that can be used for emphysema o\, (g 0.77) ©) @)
quantification. There are several ways of doing this, e.g.,, | _, [47-73]  [2.02-4.08] [93-121] [76-89]
averaging, voting, or the maximum rule [31]. In this work, we — e 58 290 101 78
evaluate averaging of soft and hard classification resiilis. smokers  (10) (0.47) ®) )
considered quantitative measures for emphysema are the mea |, _ 1, [47.73) [1.95-3.60] [85-113] [68-78]
class posterior (MCR) and the relative class area (RCA COPD 64 162 57 54
MCP,, is given by smokers  (8) (0.57) 12) @)
MCP,, — |_;| Z Plwilx;) ® n=20 [49-80] [0.94-2.73] [37-76] [42-67]
X;ES

where |S| is the number of lung parenchyma pixels in seg=LE: PSE, or PLE, in each of the 117 slices. Overall, the
mentationS and P(w;|x;) is obtained using (7). RCA is observers agreed in 53% of the slices, and they agreed on the
given by ! ’ emphysema class in 60% of slices where both decided on an

emphysema pattern.
RCA,, = 1 Z §(arg max P(we|x;) — i) (9) 168 non-overlapping ROIs were annotated manually in 25
5] x,€8 ¢ of the subjects, representing the three classes: NT (59-obse

vations), CLE (50 observations), and PSE (59 observations)
The NT ROIs were annotated in never-smokers, and the CLE
and PSE ROIs were annotated in healthy smokers and COPD
smokers within the area(s) of the leading emphysema pattern
A. Data by approximately marking the center pixel of the emphyse-

The data comes from an exploratory study carried out Bratous area. Square ROIls of a given width centered on the
the Department of Respiratory Medicine, Gentofte Uniwgrsimarked pixel were subsequently extracted. PLE was excluded
Hospital [32] and consist of CT images of the thorax acquiretiie to under-representation in the data, only two subjeads h
using General Electric equipment (LightSpeed QX/i; GIPLE as leading pattern. Therefore, we are dealing with the
Medical Systems, Milwaukee, WI, USA) with four detectothree classes; € {NT,CLE,PSE in all the experiments.
rows. A total of 117 HRCT slices were acquired by scannin )
39 subjects in the upper, middle, and lower lung. The Ch- Feature and parameter selection
scanning was performed using the following parameters: in-When using the GFB, feature selection is applied using
plane resolutio).78 x 0.78 mm, 1.25 mm slice thickness, tubethe sequential forward selection algorithm [24] for deedi
voltage 140 kV, and tube current 200 mAs. The slices wewehich filters at which scales to include. When using LBP,
reconstructed using a high spatial resolution (bone) dlgor  several combinations of radii for multi-resolution anadys

Prior to CT imaging, the subjects underwent PFTs, arade evaluated. In both approaches, differkatin the kNN
both the forced vital capacity (FVC) and the forced expinato classifier as well as different ROI sizes are evaluated durin
volume in one second (FEY were measured [33]. FEVis training. In all cases, parameters and feature sets anmiaptl
adjusted for age, sex, and height by dividing with a predictdased on validation classification accuracy.
value according to these three parameters, thereby ofaggaini
FEV,%pred. C. Classification of ROls

The 39 subjects were divided into three groups: 9 healthyClassification performance is evaluated by leave-one-
lifelong non-smokers (referred to as never-smokers), 1dksm subejct-out error estimation on the set of manually anedtat
ers without COPD (referred to as healthy smokers), and BDlIs. Six different approaches are evaluated and compared.
smokers diagnosed with moderate or severe COPD (referred’he ROIs are represented as points in a feature space, with
to as COPD smokers). The COPD diagnosis was based on dliefeatures standardized to unit variance, in the first two
recorded PFTs and done according to the Global Initiative fapproaches, and Euclidean distance in the feature spaseds u
Chronic Obstructive Lung Disease criteria [1] as follows: nin the kNN classifier.
COPD, defined as FEVFVC > 0.7 and FEM %pred> 80%; 1) GFB1: The feature vector consists of the first four
moderate to severe COPD, defined as FfHWC < 0.7 central moments computed from histograms of GFB filter
and 30% < FEV;%pred < 80%. Of the 39 subjects, 19 responses. Standard histograms are used instead of gpplyin
were women and 20 were men. Table | summarizes ttiee adaptive binning approach described in Section II-@, an
characteristics of the three groups. the four filters described in Section II-B are used, resgltm

An experienced chest radiologist and a CT experiencad 6 x scales dimensional feature vector. This set of features
pulmonologist each assessed the leading pattern, either KBembles the features used in [12], [13].

whered(-) denotes the Kronecker delta function.

IIl. EXPERIMENTS AND RESULTS



2) Intensity, Co-occurrence, and Run-length (ICRjhe
feature vector consists of the following features: the fiosir
central moments of the intensity histogram; the gray-leeel

occurrence matrix (GLCM) based measures contrast, corre-
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TABLE Il

LBP2ACCORDING TOMCNEMAR’S TEST

ROI CLASSIFICATION ACCURACY AND pP-VALUE FOR DIFFERENCE WITH

Approach  Accuracy  p-value
lation, energy, entropy, and homogeneity [6], [25]; and the GFBL 613 <101
gray-level run-length matrix (GLRLM) based measures short ICR 893 0016
run emphasis, long run emphasis, gray-level nonuniformity INT 875 0.004
run-length nonuniformity, and run percentage [6], [25].eTh GFB2 94.0 0.724
resulting feature vector is 14 dimensional. This set ofufesd LBP1 792 <104
resembles the features used in [8], [9], [11], [14], [16B][1 LBP2 95.2

The remaining four approaches all use the methods de-
scribed in Sections 1I-C and 1I-D with different feature -his TABLE Il

tograms.
3) INT: Intensity histograms.
4) GFB2: GFB filter response histograms.
5) LBP1: Basic rotation invariant LBP histograms.

CONFUSION MATRICES SHOWING THE TRUE LABEL(ROWS) VS. LABEL
ASSIGNED BY THEKNN CLASSIFIER(COLUMNS) FOR THE TWO BEST
PERFORMING APPROACHES

6) LBP2: Joint 2D LBP and intensity histograms. LBP2 GFB2

In each leave-out trial, all ROIs from one subject are held NT CLE PSE NT CLE PSE
out and used for testing. The remaining subjects are segarat | NT | 55 0 4 NT | 55 0 4
into a training set and a validation set. In this separation, | ¢tE | 1 49 0 CLE| 2 48 0
balanced class distributions are ensured by placing half th | PSE] 2 1 56 PSE| 4 0 55

subjects representing one class in the training set and the
rest in the validation set. The optimal parameter setting is
learned using the training and validation sets and canrdiff@iStakes the emphysema classes, and LBP2 only labels a
for each test subject. Subsequently, the ROIs in the testreet PSE pattern as CLE once. The agreement between the two

classified using the optimal parameter setting and all thesRGPProaches is further investigated in Section 1I-D.
in the training set and validation set as prototypes inkiih The parameter settings and filters that were most often se-
classifier. lected in the leave-one-subject-out error estimationi8iP2

In GFB1 and GFB2, the following scales are used tgnd GFB2, are shown in Table IV. The tendency is small scale

all filters: ¢ = {0.5,1,2,4,8} pixels. In ICR, GLCM and features, small ROIs, and smal
GLRLM are computed using the orientatiofts 45, 90, 135}°
and the length$1, 2, ..., 5} pixels, and the following binnings D. Parenchyma classification

of intensity values are evaluated:6,32,64} number of |, this section, results of applying the trained classifiers
bins. The GLCMs are symmetric and mean GLCM measurgg pixels within the lung fields are compared for LBP2 and
across orientation and length are used [11], [16]. GLRLM agggpg2.

computed using the Gray Level Run Length Matrix Toolbox only one parameter setting is considered for each repre-
[34], and mean GLRLM measures across orientation are usg@ntation based on the most frequent parameters in Table
In LBP1 and LBP2, the following radii and correspondingy rFor | BP2, we use{LBP"(x;R = 1,P = 8),k =
number of samples are use®® = {1,2} pixels andP = 1,ROI size= 31 x 31}, and for GFB2, we usé{G(x;o =
{8,16} samples. Common parameters considered for all s{§>'<5)7 IVG(x;0 = 1)||2},k = 1, ROI size= 31 x 31}. The set
approaches are as follows: ROI size{31 x 31,41 x 41,51 X of annotated ROIs serve as prototypes in kheN classifier.

51} pixels and number of neighbors in tHe\N classifier \when classifying the HRCT slices from a particular subject,

k={1,2,....105. _ _ all the ROI prototypes coming from that same subject are left
The estimated classification accuracies of the six appesacht in thekNN classifier.

are s_u_mm_arized in Table Il. LBP2 performs pegt, achie_vin_g_ aFig. 5 shows examples of the resulting posterior class
classification accuracy of 95.2%. However, it is not S'gn'ﬂprobabilities assigned by the classifiers in a never-smoker
cantly different p = 0.72), according to a McNemar's testHrCT slice and a COPD smoker HRCT slice. The never-
[35], from the second best approach, GFB2, which achievgs,oker has many high NT probability pixels assigned by both
an accuracy of 94.0%. As expected, including intensity {S3p2 and GFB2 as seen in Fig. 5(c) and Fig. 5(d), whereas
important. This is seen in the performance gain betwegi. coOPD smoker has many high CLE probability pixels and
LBP1 and LBP2. In fact, intensity alpne performs better thaghme high PSE probability pixels, see Figs. 5(i), 5(j), 5(m)
LBP alone, as seen when comparing INT to LBP1. LBPgnq 5(n). For the shown COPD smoker, the consensus reading
performs significantly better than the four approaches GFBJ the leading pattern is CLE in all three slices. The LBP2
ICR, INT, and LBP1 p < 0.05). We will focus on the two best posterior seems more localized than the GFB2 posterior. See
performing approaches, GFB2 and LBP2, in the remaining p@/hy., the low NT posterior area in the anterior part of the lef
of Section IlI. lung in the slice in Figs. 5(e) and 5(f) and the high CLE

GFB2 generally agree on the class labels. Further, GFB2 neve
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TABLE IV
MOST FREQUENTLY SELECTED PARAMETERS AND FILTER COMBINATIOS FORLBP2AND GFB2IN THE LEAVE-ONE-SUBJECFOUT EXPERIMENTS IN
SECTIONIII-C. ONLY PARAMETERS AND FILTERS SELECTED IN AT LEAST20%OF THE LEAVE-OUT TRIALS ARE SHOWN OTHER GFB2FILTERS THAT
ARE SELECTED TOGETHER WITH THE REPORTEGFB2FILTER COMBINATIONS IN LESS THAN20%OF THE INDIVIDUAL EXPERIMENTS ARE NOT SHOWN

LBP2 GFB2
-
—~ [N
I I L
Q Q -~ ~~ ~ ~ -
— o~ o = = == ==
o A L |87 &7 §5F &=% ~
x 5 R © S S S Sl ©
) PR I e e oo 1 &b I
Y B ler o8 SHE X 8
a roak 2128 XU XT0 XTO h i 2
~ ~ i ~ X 8 9 z S?a z S?a z E 9 E E x X 8
56% 20%  24%  96% 969 92%  28% 24% 28% 64% 20%  96%
TABLE V TABLE VI
CONFUSION MATRIX BETWEENGFB2AND LBP2 ACROSS ALL SUBJECTS CORRELATION OFCT BASED EMPHYSEMA MEASURES WITH
FOR ALL LUNG PARENCHYMA PIXELS. THE NUMBERS REPORTED ARE IN FEV1%PRED. THE p-VALUES OF THE CORRELATIONS ARE SHOWN IN
PERCENTAGE OF TOTAL NUMBER OF LUNG PARENCHYMA PIXELS PARENTHESES
LBP2 NT LBP2 CLE LBP2 PSE Measure r
GFB2 NT 48.2 1.0 4.1 MCPvr  0.77 p < 10-%)
GFB2 CLE 2.9 16.8 25 MCPcle  -0.74 (p < 107%)
GFB2 PSE 2.9 0.4 21.3 LBP2 MCPpsg  -0.40 (p = 0.011)
RCANT 0.77 p < 107%)
RCAcLe  -0.78 p < 107%)
Correlating the class posteriors shows a high degree of RCApse  -0.66 (p < 107%)
agreement between LBP2 and GFB2= 0.93 (p < 107%) MCPyT 0.76 p < 10~%)
when correlatingP(NT|x) of the two classifiersy = 0.94 MCPce  -0.79 p < 107%)
(p < 10~%) in the case of?(CLE|x), andr = 0.91 (p < 107%) MCPpse  -0.28 (o = 0.088)
. GFB2
in the case of P(PSHx). Further, class label agreements RCANT  0.75 p < 10~%)
between LBP2 and GFB2 in each lung parenchyma pixel are RCAcle -0.74 p < 10%)
shown in the confusion matrix in Table V. This result is based RCApsg  -0.66 pp < 10—%)
on a hard classification obtained by applying the maximum a RA910 -0.62 p < 107%)

posteriori rule in each pixel. The two classifiers generally
in good agreement; in 86.3% of the pixels, the two classifiers
agree on the class label. the Hotelling/Williams test, we correct for the differente
signs.
All measures, except LBP2 and GFB2 based M&P
separate the group of COPD smokers from the combined group
In this section, we evaluate the value of fusing pixel postgs never-smokers and healthy smokers according to a rank
rior prob_abilities_, computed using the proposed classiioa g;m test B < 0.05). The separation can also be seen for
system, into a single measure for emphysema. LBP2 based MCRyr in Fig. 6(a). The figure also shows that
The full lung classification results of Section Ill-D ar&ne individual features of the joint LBP and intensity featu
turned into quantitative measures of emphysema using MCHistogram measure different properties of the parenchyma a
according to (8) and using RCA according to (9). These gypject level. Using intensity alone, i.e., parenchymasitgn
measures are computed across the three HRCT slices gfyits in the picture shown in Fig. 6(b), and using LBP ajone

resenting a subject. We evaluate the obtained measures; By parenchyma micro-structures, results in the picsti@vn
correlating with FEV%pred, which is one of the standardp Fig. 6(c).

PFTs for diagnosing subjects with COPD [1]. The common
CT based measure RA is also included in the evaluation, n thi IV. DISCUSSION ANDCONCLUSION

case using a threshold ef910 HU [3], [5], [32] (RAg10). The e ; -
results are shown in Table VI where the NT based measungThe proposed classification system using LBP2 achieves an

hi lati Hicient ing — 075 ¢t Ol classification accuracy of 95.2%, see Table I, with an NT

achieve correlation coetiicients ranging from= 9.75 10 sensitivity and specificity of 97.3% and 93.2% respectively

r = 0.77. For comparison, Ry correlates significantly This is better than using GFB or ICR, and is within the
. 0 ,

worse with FEV%pred than the NT based measures d%—lOO% range of NT sensitivities and specificities reported

(p < 0.05) according to a Hotelling/Williams test [36]. In in the literature [9], [11]-[16]. The experiments reveatbdt

E. Emphysema quantification
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(c) LBP2 NT posterior

(g) LBP2 CLE posterior

(k) LBP2 PSE posterior (I) GFB2 PSE posterior (m) LBP2 PSE posterior (n) GFB2 PSE posterior

Fig. 5.  An HRCT slice from a never-smoker and from a COPD smaégether with posterior probabilities computed in eachglyparenchyma pixel.
White is high probability and black is low probability. (a) ©riginal HRCT slices shown with the window settirgs00/1500 HU [4]. (c, g, k) LBP2 based
posteriors for the never-smoker. (d, h, I) GFB2 based piostefor the never-smoker. (e, i, m) LBP2 based posterioralfe COPD smoker. (f, j, n) GFB2
based posteriors for the COPD smoker.

using LBP in isolation does not work well in the presented(a) and 4(b) are much more obvious than between the LBP
application. This was to be expected, since LBP by design dnstograms 4(d) and 4(e). Other feature sets, like GFB, also
invariant to monotonic intensity transformations and éiere include intensity and hereby also mix structure and density
discard the density information contained in the CT imagaformation. However, obtaining a similar representation
intensities. Including intensity information via the joibBP LBP2 in GFB, i.e., joint histograms of structure and density
and intensity histogram combines complementary inforomati would require histograms of much higher dimensionalityhwit

in the form of micro-structures and densities. Hereby it isne dimension for each type of micro-structure such as edge,
measured at which densities the different micro-strusturblob, etc., potentially leading to problems with overfigtim
reside which improves discrimination considerably. Thas icases of limited number of training samples.

illustrated when comparing Figs. 4(a) and 4(b) to Figs. 4(d) CT based computerized quantitative measures of emphy-
and 4(e) where the differences between the joint histograsema are often evaluated by correlating the obtained CT
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example, measures derived from blood samples, other PFTs,
or health status questionnaires [42] could be used.

Parket al. previously performed emphysema quantification
based on a hard classification of the lung parenchyma pixels.
A weighted sum of the relative areas of mild end severe
emphysema was used, and they reported a correlation of
—0.47 with FEV,%pred [16]. Based on the results of our
experiments, nothing conclusive can be stated about fugion
soft versus fusion of hard classifications, i.e., (8) ver@)s
Both methods work well, and as seen in Table VI, all the NT
based measurements correlate significantly with Fapred
with correlation coefficients in the range= 0.75tor = 0.77.

It should be noted that in [16], the correlation between RA,
using a threshold of950 HU, and FE\,%pred is—0.42. In

our data, agreement between CT and PFT generally seems to
be better with the correlation between R4 and FEV, %pred
being—0.62. This fact, as well as the fact that we are dealing
with a broader range of subjects compared to [16], could
explain the difference in correlation level.

Different features may capture different information ire th
CT images, and though the per pixel posterior probabilities
of LBP2 and GFB2 are highly correlated, there may still
be something to gain by combining the output of the two
classifiers. This was tested by combining the pixel posterio
P(w;|x) of LBP2 and GFB2 with the sum rule and the
maximum rule respectively [43], followed by posterior fusi
of the combined pixel posteriors. These results did not show
any significant improvement in correlation with FE®épred,
which indicates that the two classifiers indeed capturelaimi
information in the CT images.

In this work, we have done no preprocessing of the HRCT
slices prior to computing feature histograms. Instead, axeh
relied on the filters to perform the necessary processiug, e.
noise smoothing in the GFB by selecting the approprate
picking up certain micro-structures from the noisy backup
in LBP by selecting the appropriate radius. It is up to the
training procedure to pick these settings.

Further, all available information has been taken into ac-
count in the feature histogram estimation by including all
pixels in the ROIs instead of first excluding, e.g., the vissse

Fig. 6. MCRyr for all 39 subjects divided on the three groups; never-smipke [11], [14] or the airways [14]. Thus, also pixels outside the

healthy smokers, and COPD smokers. The dashed lines areatonn the

means of the three groups.

lung fields and pixels from non-parenchyma structures withi
the lungs contribute. This can be seen as an implicit way of
encoding context information in the feature histogramshwi

measures with other markers for disease, such as PFTst position being “near the border of the lung” or “near the
plasma biomarkers, in the clinical literature. A few exaespl hilar area”. It may lead to slight overestimation of PSE at
of such studies are: [32], [37]-[40]. In this paper, we havde border, see Fig. 5, but in practice, this should not be a
performed a similar evaluation and correlated the propostfl problem as long as the prototype set contains samples at
guantitative measures with another marker for emphyseff§¢ border representing all classes. In our data, NT and CLE
in Section IlI-E, namely FEV%pred, and in general the ROIs were mainly annotated in the central parts of the lungs.
correlations were strong, up fo| = 0.79. It is known that Nevertheless, the proposed classification system is ocapabl
PFTs are noisy measurements [41], and that they are affec@édliscriminating between normal tissue and emphysematous
by other phenomena than emphysema, e.g., inflammationtigsue within the lung, as seen in the confusion matrices for
the airways. Still, some degree of agreement between PAIEP2 and GFB2 in Table IIl.

and CT based emphysema measurements is expected. Ifig- 6(a) reveals that very similar measures are obtained
the future, we intend to further evaluate the proposed 9 the never-smokers and the healthy smokers. One might

based emphysema measures by utilizing more meta data. €¢pect the healthy smokers measures to be slightly lower
than the never-smokers on the M@Pscale due to early
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stages of emphysema not yet detectable by PFTs. Basing difeerence was not significant in our experiments. MEP
measurements only on intensity feature histograms resultscorrelated significantly better with pulmonary functiorath

the healthy smokers having an even larger probability of BIT ghe most common standard CT measure, RA, which suggests
seen in Fig. 6(b), indicating a difference in density for thve that texture based measures may be better indicators of the
groups. This corresponds well with recent results indigati degree of emphysema. In addition, LBP seem to pick up
that lung parenchyma is more dense in healthy smokers th@artain micro-structures that are more frequent in smokers
in never-smokers possibly due to smoke induced inflammatiortiuding smokers who still have good lung function, than
[40], [44]. On the other hand, basing the measurementsysolal people who never smoked. This structural information
on LBP feature histograms results in a slight drift downvgardmproves discrimination in our experiments and may also
as seen in Fig. 6(c), suggesting that there may be structumprove sensitivity to early changes in lung tissue intggri
differences that can be captured at an early stage by LBP. As

described in Section II-A, LBP are gray-scale invariant and ACKNOWLEDGMENT

there_fore_ not affected by parenchymgl d_ensity changess Thi s ywork is financially supported by the Danish Coun-
also implies that the proposed classification system shlumlldCiI for Strategic Research under the Programme Commis-

less sensitive to Inspiration level as compargd to, e'.g?lRA sion for Nanoscience and Technology, Biotechnology and IT
Basing the dlscr|m|nat|_on of ROIs on dISS|m|Iar|t_|es be(NABIIT), the Netherlands Organization for Scientific Re-

tween sets of feature histograms, using a combined hé%'arch (NWO), and AstraZeneca, Lund, Sweden.

togram dissimilarity directly as distance inkAIN classifier, Fig. 1, part of Fig. 2, part of Fig. 3, part of Table II, and

e , . ) ?)art of the introduction have been reused from [19] with kind

good ROI classification accuracies and high correlatiotth wij . iccion of Springer Science+Business Media.

FEV,%pred. Using full feature histograms differs from théJ

common approach of using measures derived from feature

histograms, such as moments of filter response histograms

or GLCM measures, as features in a feature space [8]1] K. F. Rabe, S. Hurd, A. Anzueto, P. J. Barnes, S. A. BuisCé&lverley,

. . . . Y. Fukuchi, C. Jenkins, R. Rodriguez-Roisin, C. van Weetl anZielin-
[18]- LOOk'ng at Fig. 4, tak'ng Only the first four moments ski, “Global strategy for the diagnosis, management, asggmntion of

of the GFB histograms could potentially discard valuable chronic obstructive pulmonary disease: GOLD executiveraany,” Am.
information about the shape of the histograms such as tgﬁ J. Respir. Crit. Care Medl.vol. 176, no. 6, pp. 532-555, Sep 2007.

. . . J. W. Gurney, “Pathophysiology of obstructive airwaysedise.”Radiol.
presence of multiple mods. A previous comparative study Clin. North Am, vol. 36, no. 1, pp. 15-27, Jan 1998.

texture features for classification reported similar figdion  [3] N. L. Miiller, C. A. Staples, R. R. Miller, and R. T. Abbout{Density

two standard texture data sets [26]. In this work, we wanted Mmask’. An objective method to quantitate emphysema usimgpoted
. . tomography,”Chest vol. 94, no. 4, pp. 782-787, Oct 1988.
to exploit the full feature histograms and therefore usesl thiy; w R webb, N. Miller, and D. NaidichHigh-Resolution CT of the

kNN classification framework with histogram dissimilaritg a Lung, Third Edition J.-R. John, Ed. Lippincott Williams & Wilkins,
distance, and LBP and GFB were shown to work very wel| 2001

in thi . | . f ibility that inif. d 5] T. Stavngaard, S. B. Shaker, K. S. Bach, B. C. Stoel, anditksen,
In this setting. It remains of course a possibility that ini “Quantitative assessment of regional emphysema disiibun patients
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