A nonlinear mixed-effects model for simultaneous
smoothing and registration of functional data

Lars Lau Rakét!, Stefan Sommer!, Bo Markussen?
Department of Computer Science
2Department of Mathematical Sciences
University of Copenhagen, Denmark

December 10, 2013

Abstract

We consider misaligned functional data, where data registration is nec-
essary for proper statistical analysis. This paper proposes to treat
misalignment as a nonlinear random effect, which makes simultane-
ous likelihood inference for horizontal and vertical effects possible. By
simultaneously fitting the model and registering data, the proposed
method estimates parameters and predicts random effects more pre-
cisely than conventional methods that register data in preprocessing.
The ability of the model to estimate both hyperparameters and pre-
dict horizontal and vertical effects are illustrated on both simulated
and real data.

Keywords: data alignment, functional mixed-effects model, nonlinear
mixed-effects model, phase variation, amplitude variation, smoothing

1 Introduction

The current standard practice of analyzing functional data in a number of
sequential steps is problematic. Analyses are often carried out by perform-
ing one or more independent preprocessing steps prior to the final statistical
analysis (Ramsay and Silverman, [2005). Typical examples are data regis-
tration, pre-smoothing, and dimensionality reduction. Such preprocessing
steps can cause problems since the final analysis does not take the resulting
data modifications (and their related uncertainty) into account. In the worst
case this may invalidate the conclusions of the final analysis.

This paper considers misaligned functional data, where proper registra-
tion is key to analyzing the data. Treating data registration as a prepro-



cessing step can cause problems. In particular, noisy observations can skew
registration results such that noise rather than signal is aligned. Since this
type of overfitting happens prior to the statistical analysis, it will lead to
both wrongly predicted warps and underestimation of the noise variance.
To deal with these issues we propose to simultaneously do likelihood-based
smoothing and data registration in a general class of nonlinear functional
mixed-effects models. By computing both registration and smoothing at the
same time, we will get the optimal registration given the prediction of the
functional mixed-effects and vice versa.

The mixed effects are assumed to be observations of Gaussian processes,
and the resulting calculations are carried out by iteratively linearizing the
model and estimating parameters from the resulting likelihood function. In
addition to allowing estimation of the optimal combination of smoothing
and registration, all parameters can be estimated by maximum-likelihood
estimation. This contrasts most previous works on simultaneous smoothing
and registration (see e.g. [Lord et al. (2007) and Kneip and Ramsay| (2008))
where parameters have to be adjusted (semi-)manually. Some notable excep-
tions are Rgnn| (2001)), Gervini and Gasser| (2005), and Rgnn and Skovgaard
(2009) who presents methods for doing full likelihood inference for time-
transformed curves, and Allassonniere et al. (2007) who derive a rigorous
Bayesian framework for estimating data deformation and related parame-
ters. In contrast to the mentioned works, the model we present seeks to
align fixed effects, but allows for serially correlated effects that cannot be
matched across functional samples. Since much functional data contains se-
rially correlated noise, e.g. from the measuring device or individual sample
differences, a model that allows the separation of such amplitude variations
from the phase variation is a considerable step forward.

It is worth noting the differences with pair-wise data registration as is
often employed in for example medical imaging. Instead of the common
approach of choosing parameters of the registration model either by heuris-
tic arguments or by cross-validation, incorporating the entire dataset or
population in the analysis allows parameters to be estimated by maximum-
likelihood inference. In addition, instead of searching for a similarity mea-
sure that is invariant to certain types of serially correlated effects, e.g. mu-
tual information (Viola and Wells| 1995)), the explicit modeling of the serially
correlated effects removes the need for invariance in the similarity measure.

The proposed methods are illustrated and compared to conventional pre-
processing alignment on simulated dataset, and a general model for align-
ment is proposed and evaluated on four real datasets.



2 Motivation and preliminaries

Two of the major challenges when analyzing functional data are modeling of
individual sample effects and aligning of functional samples. Figure [1]illus-
trates these effects on their own, and in combination, on a one-dimensional
functional dataset.

(a) Individual variations  (b) Alignment variations  (¢) Alignment variations
plus individual variations

Figure 1: Different types of variation in a one-dimensional functional
dataset. The true underlying curve is shown in green, the average curve
is shown in dashed red.

In order to handle individual variation (corresponding to the situation
in Figure [l| (a)), one can consider a linear functional mixed-effects model
where the kth observation point of functional sample ¢ from the dataset y
is assumed to be generated as follows

vi(te) = 0(tx) + xi(ty) + €ins (1)

where 0 is a fixed effect, x; is a zero-mean Gaussian process with covariance
function 028, and €;;, is independent identically distributed Gaussian noise
with variance o2. Inference in this class of models has been considered in
numerous works , .

In contrast to the vertical variation due to individual sample differences
one may encounter horizontal variation due to non-aligned samples (Figure
(b)). To align samples, one wishes to estimate so-called warping functions
v that model the horizontal variation. Similarly to the vertical variation,
one may consider the following functional mixed-effects model for this setup

Yi(te) = O(v(t, wi)) + i, (2)



where 6 and ¢;;, are as in , and v is a warping function depending on w;
that is a vector of Gaussian parameters with covariance matrix Cy. This
model can be considered a nonlinear mixed-effects model, and many known
registration algorithms can be thought of as methods for predicting the
warping parameters in the model , with a known fixed effect 6.

The model (2]) has been considered in a statistical setting by |Rgnn| (2001]),
Gervini and Gasser| (2005)), and Rgnn and Skovgaard| (2009), who all consider
the problem in a nonparametric maximum likelihood setting. An alternative
view is taken in shape analysis, where the interest is on the common shape 6,
while the warping functions are considered nuisance parameters, and data is
generally considered free of observation noise. From this viewpoint [Kurtek
et al.| (2011) and Srivastava et al. (2011)) have recently proposed an estima-
tion procedure for 6 based on the Fisher-Rao metric, that is invariant to
diffeomorphic data warping. The mean shape is subsequently used for es-
timating the warping functions and aligning data. This approach produces
state-of-the-art results on numerous examples, but is not generally applica-
ble to all types of data, since the invariance to diffeomorphic warping may
lead to overfitting when significant noise is present.

In practice, data often exhibit both vertical and horizontal variation.
Figurell|(c) shows alignment variations of the fixed effect with added serially
correlated effects, i.e. a combination of the models and

yz(tk) = Q(U(tk, 'wl)) + x,(tk) + Eik- (3)

This type of model describe the fixed effect as a deformation of 6 and allows
a serially correlated effect x; that follows the coordinate system of the ob-
servation. For some examples, it may be natural to consider the correlated
effects x; in the coordinate system of the fixed effect . That model will not
be considered here, but inference may be done completely analogous to the
procedure described for model .

Data modeling following the lines of model have received little at-
tention. One notable exception is the paper by [Bigot and Charlier| (2011)
who consider the sample Fréchet mean as an estimator for 8 in the model
where the effect z; also undergo warping by v, and give conditions under
which the estimator is consistent. They do however not consider parame-
ter estimation and prediction of random effects. In another related work,
Elmi et al.| (2011) derive a B-spline based nonlinear mixed-effects model
in a maximum likelihood setting. The model allows incorporation of data
registration, and is applied to labor curve data, where amplitude variation
is modeled parametrically, with random additive and multiplicative effects.



Another application of this type of model is considered by (Chambolle and
Pock! (2011) in the setting of motion estimation in image sequences. They
propose to include a spatially correlated effect that plays the role of lighting
differences between the images in question. Their approach, however, does
not take the uncertainty related to the prediction of the spatially correlated
effect into account in the estimation of the warp, and do not consider the
question of parameter estimation.

In the following we will derive inference methodology for the model .
In contrast to conventional preprocessing approaches that register raw data,
the proposed methods can separate horizontal and vertical variation, and
allows for maximum-likelihood estimation of all hyperparameters.

3 Estimation

Consider model , where the functional data is defined on a domain 7 C
R, with m vectorized samples y1, ..., ¥,,, each of which consists of n points.

The estimation procedures consists of interleaved steps of estimating (a)
the fixed effect and the warps; and (b) the parameters of the model and
the serially correlated effects. In order to do likelihood estimation of the
parameters, we iteratively linearize the model around the given predic-
tion of the warping parameters w. This approach is similar to |[Lindstrom
and Bates’s (1990) strategy for obtaining maximum likelihood estimates in
nonlinear mixed-effects models. It is however more general from the point of
view that we predict both linear and nonlinear random effects and estimate
the function € causing the nonlinearity simultaneously.

In pursuance of generality, we will assume that 6 is parametrized by
its n values at the positions 5, and that in-between values can be found
by interpolation (e.g. cubic spline interpolation). This parametrization
mimics the parametrization one would use in a conventional mixed effects
model, and follows the well-established convention of interpolation used for
motion estimation in image sequences (Sun et al., 2010). We will assume
differentiability of the estimated effect, so the type of interpolation chosen
should reflect this. More explicit control of the smoothness of 8 can be
achieved by specifying a parametric subspace for 6, given by a set of smooth
basis functions, or by means of a roughness penalty (Liu and Guo, 2012).
Such constructions will not be pursued here.

Using the smoothness of 6, the model can be linearized in the warping
parameters w; around a given prediction w! by means of the first order



Taylor approximation,
0(v(t, wi) = 0(v(t, w;)) + 00 (v(th, W) Vet (th, wy) (wi — wy).

The derivative of # may be computed explicitly from the interpolation func-
tion, or it may be estimated by a finite difference approximation.

Let N = mn be the total number of observation points, and let n,, be
the dimension of the warping parameters w;. We can write the linearization
of model as a vectorized linear mixed-effects model

y:9w0+Z(w—w0)+a}+€ (4)

where .
6" ~ {0(v(ty, w;))}ip € RY,

Z = diag(Zi)i<icm,  Zi = {0i0(0(tg, wY)) Vv (t, w) }x € R ™,
w = (Wi)1<i<m ~ Ninny, (0,0°C),  C =1, ® Cp,
x = {2;(t;) ki ~ Nn(0,0289), S =l @ {S(tr, te) b res
e ~ Ny(0,0%Iy),

and ® denotes the Kronecker product.

The first step of the analysis consists in estimating the fixed effect 6 at
the positions t;. Assuming that 'w? is a correct prediction, back-warping
the observations y; with v(t,w?), and using the non-linearized model we
get that

yi(v (tk, w7)) = O(t) + wi(v (tk, w7)) + €,

where < indicates inversion of the warp. Ignoring the slight change in vari-
ance caused by the back-warping, and hence assuming equal covariances
across the different functional samples, the best linear unbiased estimate
(Hendersonl, [1975) of 6 given the warp is defined pointwise by

m

0t) = — > 5o (1, ) (5)

=1

This estimate should in principle be computed such that the interpolation
of the data performed in relation to the back-warping is taken into account.
While such computations are feasible, we will not consider that here, since
the practical difference is minimal.



With this estimate of # we estimate the variance parameter ¢ and pos-
sible variance parameters in the covariance matrices C' and S from twice the
negative log likelihood of the linearized model, which has the form

~ w9 a0
0(6?,C,S) = Nlog o +logdet V4o 2(y—0" +Zw’) V' (y—0" +Zw"),

where V = S+ ZCZ " +1Iy. Following Markussen| (2013), the double negative
log likelihood is rewritten as
(0?0, S) = nmlogo?® +logdetV + o 2r'r
+0’Elw|y]  C'E[w|y]+ 0 E[z|y]" STE[z|y],

0 (6)
wherer =y —6" —Z(E[w]|y]—w’)—E[x|y]. The best linear unbiased
predictor of w and the spatially correlated effects @ in the linearized model
are given by their conditional expectations given data (Robinson, 1991)

E[w|y]=(C"' + 2 (Iy+5)'2)"' 2 (Iy + §) " (y — 6 + Zu”)
(7)
and
Elz|y]= S0y +8) (- 0" — ZE[w|y]-w’).  (8)

The estimation process is now iterated: Given the estimates of § and
0 are predicted by
minimizing the nonlinear negative log posterior (Lindstrom and Bates, 1990)

the variance parameters, the new warping parameters w

pw) = (y—0)T(S+Ix) "y —0") +w'Clw
=(y-0" -E[z|wy]) (y— 0" —E[z|w,y]) 9)
+E[z|w,y]" STE[z|w,y]+w O lw

where

E[z|w,y]=S5(S+Iy) (y—8").

We note how g differs from conventional methods of estimating data warps
by the explicit modeling of the residual y — 8" in terms of E [x|w,y] and
the corresponding complexity cost. This way we allow for probable data
differences that are captured well by the predicted amplitude effect .

The entire estimation procedure is outlined in Algorithm [I} The inner
loop produces the estimates for the fixed effect and the warps. The outer
loop produces the estimates for the parameters and the predictions of the
serially correlated effects.



Algorithm 1: Inference in the model .

Data: y

Result: Estimates of the fixed effect and variance parameters of the
model , and the resulting predictions of the serially
correlated effects & and the warping parameters w

// Initialize parameters

Initialize w"

Compute éwo following
for i =1 to ipax do
// Outer loop: parameters, serially correlated effects
Estimate variance parameters and predict serially correlated
effects by minimizing the double negative log linearized likelihood
Q‘j—l tijax do
// Inner loop: fixed effect, warping parameters
Predict warping parameters by minimizing (9)
Update linearization points w® to current prediction

B
Recompute 0" from
end

end




4 Experimental results

In this section we study the performance of the estimation procedure. We
first consider a simulation study, where we show that the estimation pro-
cedure is able to correctly predict the parameters of the underlying model
used for generating the data, and illustrate how the simultaneous estimation
of warps and serially correlated effects increases the precision of the predic-
tions. This is followed by an example of a general class of models that can
be used for modeling non-aligned data. We illustrate the models on four

real datasets.
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Figure 2: Density plots of variance parameter estimates from 200 indepen-
dent realizations of the model . Seven outliers have been removed in the
bottom left plot (4 Simultaneous, 3 Preprocessing)

Consider synthetic data generated from the model
yi(ty) = 0tk +w;) + xi(tg) + ik (10)

where the w;s and g8 are respectively independent identically distributed
N(0,0%)?) and N(0, 02) variables, the x;s are independent zero-mean Gaus-
sian processes with Matérn covariances o2S

S(s, ) = o—2r(y1)21 (Vavalls 1) K, (Vavalls 1), (1)
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Figure 3: Density plots of mean square errors of 6 (top) and predictions
of the serially correlated effects x (buttom left) and the warping parame-
ters w (buttom right) from 200 independent realizations of the model (10)).
Ten outliers have been removed in the buttom left plot (4 Simultaneous, 6
Preprocessing).

where K, is the modified Bessel function of the second kind, and @ is given
by

0(t) = ©(t,0.3,0.05%) + ©(t,0.5,0.1%) — ©(t,0.6,0.05%) + ©(t,0.7,0.03?)

where ¢(t, i1,6?) is the normal density with mean p and variance ¢2. The
variance parameters of the model were chosen as follows

c=0125, A=03, wv=15 a=10.

Figure [1f (c) displays noiseless samples from this model, i.e. with € = 0.

We generated 200 independent functional dataset with m = 50 functional
samples, each consisting of n = 200 observation points.

The presented method, denoted by Simultaneous, was applied to the
simulated datasets. The fixed effect 6 was interpolated using a natural
cubic spline and the shifts w; were initialized as the minimizers of the least
squares criterion R R

(y—6")"(y—6").
The algorithm used 1,2 = 5 outer iterations and jyax = 10 inner iterations,
after which convergence was assumed.
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The method was compared to a Preprocessing approach where the warp-
ing parameters w were predicted by minimizing

(y—6") (y—0")+ 1\ 2w w

using the ground truth A value. This procedure corresponds to perform-
ing the inner iterations of Algorithm [I which is equivalent to iteratively
minimizing the negative log posterior of model , i.e. @D with S = 0,
updating the estimate 0 after each iteration. The resulting predictions were
then used to back-warp data (i.e. each y; was shifted by —w;), which was
subsequently analyzed using model . Finally the simulated datasets with-
out shifts were analyzed using model , producing a reference points for
the optimal performance of the other methods. We denote this method by
No shift.

Figure [2| shows density plots of the estimated variance parameters, and
Figure [3] displays density plots of the mean square errors of the estimated
fixed effects @ evaluated at all observation points t, and the predictions of
the serially correlated effects & and warping parameters w. We see that the
proposed method produces good parameter estimates and generally mimics
the results of No shift. Preprocessing on the other hand, generally underes-
timates the variance of the noise and overestimate the variance of the corre-
lated effects, which is symptomatic of bad alignment. Figure [3| shows that
all methods estimate 6 reasonably well, but that the ability of Preprocess-
ing to predict the serially correlated effects  and the warping parameters
w is significantly worse than Simultaneous. The simultaneous parameter
estimation and prediction of  and w clearly increases the precision of the
predictions, and generally mimics the optimal behavior of No shift.

4.2 Real data

In this section we consider a general application of model for simulta-
neously aligning data and modeling individual amplitude effects. We con-
sider four real datasets: Handwriting signature acceleration data (Kneip
and Ramsay, [2008)); gene expression data (Leng and Miiller}, |2006); growth
velocity data for male subjects in the Berkeley growth studyE|; and spike
train data (Wu and Srivastava, |2011). These four datasets has previously
been analyzed in the context of data registration by [Srivastava et al. (2011)),
who also give detailed descriptions of the datasets.

"http://www.psych.mcgill.ca/faculty/ramsay/datasets.html
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Figure 4: Results of Algorithm [l| on four datasets. Black dashed curves
show the mean curve.

For the spatial covariance oS we use the exponential covariance function
S(s,t) = Bexp(—alls —tf),  a,8 € (0,00)

which is a special case of the Matérn covariance ([11)).
We consider two different models for the distribution of the warps of the
time axis [0, 1]. The first one is given by linear interpolation of a discretized

12



Brownian bridge evaluated at the points ¢}, ... ,t;lw, i.e. the covariance
matrix Cy of w; = (w1, ..., Wiy, ) is given by evaluation of the covariance
function

Ct,t") = N2t At —tt'),

where A denotes the minimum operator. The second model instead assumes
a Brownian motion, i.e.

C(t,t') = N2t AL).

The corresponding warping function is
U(tk, w,) = tk + gwi(tk),

where &, is the linear interpolation function of w;. The Brownian bridge
model is useful for data where the observed endpoints of the functional
samples correspond to the endpoints of the fixed effect. The Brownian
motion model is suitable when the variance of the warp increase with ¢, and
the right endpoints of the functions are different, thus allowing warping of
the fixed effect outside of the right endpoint.

While these models assign positive probability to non-diffeomorphic warps,
a sufficiently small A-value will make the predicted warps diffeomorphisms
with high probability. As we will see, the maximum likelihood estimates for
the given datasets do not lead to any non-diffeomorphic warping functions.

The Brownian bridge model was used for the signature and gene expres-
sion data, while the Brownian motion model was used for the male growth
data and the spike train data, where warping effects seem to accumulate
over time. We used n,, = 15 equidistant warping points in [0, 1] and the
number of inner iterations jmax was fixed to 10. In order to have comparable
results all datasets were normalized to [0, 1] prior to the analysis. We note
that since the linearization is a local approximation, we may get stuck in a
local minimum depending on the initialization of the warps—in particular if
the warps severely overfit the data in a non-diffeomorphic fashion. For this
reason we initialize the warps by running 10 inner iterations of minimizing
the nonlinear posterior @D using the parameters A = 1, § = 10 (Brown-
ian bridge) and § = 100 (Brownian motion), and o = 1, which produce
initial warps that only deviate slightly from the identity. Table [I| contains
information about data sizes, runtime, and number of outer iterations 4yax
needed for convergence. Table [2| contain the parameter estimates for the
four datasets, a relative warp variance (rwv) measure that is computed as
the average relative variance contribution of the warp in the linearized model

13



, i.e.

1 Var(9;0(v(tx, w )) wV(tg, w )'wz)
Zkz Var(n(6)) |

Furthermore, Table [2] hold three different measures of data synchronization
(Srivastava et al., 2011)).

Table 1: Data sizes, number of iterations needed for convergence, and total
runtime (3.4 GHz Intel Core i7, single core) of Algorithm [1] for the four
datasets. Convergence was assumed when the variance parameters did not
change in two consecutive outer iterations.

m N imax runtime

Signature 20 98 77 2509 sec
Gene expression 159 52 31 2388 sec
Male growth 39 156 36 1181 sec
Spike train 10 250 51 5883 sec

Table 2: Estimated variance parameters for the four real datasets, along
with measures of model fit. rwv denotes the average relative data variation
ascribed to the warp (see text), and s, pc, and sls denotes respectively cross-
validated least squares, pairwise correlation, and Sobolev least squares (see
Srivastava et al. (2011]) for details).

~ A~

o A I3 a rwv Is  pc  sls

Signature 1.96-107% 230 4.33-10° 1.65 0.19 0.59 1.07 0.26
Gene expression 2.03-107% 282 2.12-10° 298 005 094 119 0.81
Male growth 1.41-10-* 751 247-10° 286 035 0.77 1.11 0.2
Spike train 1.67-107* 536 1.04-10° 253 051 077 098 0.58

The results of the registration procedure on the four datasets can be seen
in Figure [l Visually, the improved alignment of the curves is immediate.
For the signature and male growth data, the data synchronization measures
in Table [2] are comparable to the results of Srivastava et al. (2011), while
the synchronization for the gene expression and spike train datasets is lower.
These less obviously aligned samples however fit well with the goal of the
model—we want to decompose data variation into horizontal and vertical
components. In particular we see that the average relative warp variance is
only 0.05 for the gene expression data, which indicates that the model found
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that the amplitude variation in the data was so large, that only large scale
structures could be matched.

Finally, we notice that for the gene expression and male growth data,
the predicted individual effects seem to imply a bigger variability at the
beginning of the samples. Modeling the covariance of the x;s to follow the
underlying physical heterogeneity of the data, could possibly improve the
model fit.

5 Conclusion and outlook

We have introduced a statistical model that includes data warping for mis-
aligned functional data. Compared to previous works, the model incorpo-
rates serially correlated effects explicitly and simultaneously provided esti-
mates of the model parameters. The corresponding estimation algorithm
was compared to conventional data analysis where registration is done as
preprocessing in the simplest case of misaligned data; the fixed-effect curve
being shifted across samples. The comparison demonstrated that param-
eters were estimated significantly better using the simultaneous approach,
and that serially correlated effects were predicted more precisely. Further-
more, we demonstrated that the model can be applied to real data with
good registration results.

The proposed model can be extended in several directions. In its pre-
sented form, the model allows for parametric warping of data. Replacing
the warping parameters w in model by a continuous Gaussian processes
would allow for fully non-parametric warping. Furthermore the model is
easily generalized to more complex experimental designs or data on high-
dimensional domains, such as images.

The presented algorithm is computationally demanding for large data
sizes, because of the need to invert the dense covariance matrices of the
individual effects. For models with low-dimensional parametric warps, the
computationally attractive approximations for predicting individual effects
of Markussen| (2013) and Rakét and Markussen, (2014) are directly applica-
ble. New methodological work is however still required in order to use the
presented model on very large datasets requiring non-parametric registra-
tion, e.g. neuroimage data.
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